Java多线程基础
1. 线程简介
程序、进程、线程的内容和关系
- 程序,是指指令和数据的有序集合,其本身并没有运行的含义,是一个静态的概。
- 而进程则是执行程序的一次执行过程,他是一个动态的概念。是系统资源分配的单位。
- 一个进程可以有多个线程,如视频中同时听到声音,看图像,看弹幕,等等
- 通常在一个进程中可以包含若干个线程,当然一个进程中至少有一个线程,不然没有存在的意义。线程是CPU调度和执行的单位。
ps:真正的多线程是指有多个CPU,即多核,如服务器。但是很多电脑都是只有单核,那么它所表现出来的多线程其实是模拟出来的,即,在一个CPU的情况下,在同一个时间点,CPU只能执行一个代码,但是因为切换的很快,所以就有同时执行的错觉。
本章核心概念
- 线程就是独立的执行路径;
- 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程,gc线程;
- main() 被称为主线程,为系统的入口,用于执行整个程序;
- 在一个进程中,如果开辟了多个线程,现成的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为的干预的;
- 对于同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制;
- 线程会带来额外的开销,如cpu调度时间,并发控制开销。
- 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致
2. 线程创建
三种创建方式
1. 继承 Thread 类(重点)
- 自定义线程类继承Thread类
- 重写run()方法,编写线程执行体
- 创建线程对象,调用start()方法启动线程
线程不一定立即执行,CPU安排调度
package com.hjq.demo01;
//创建线程方式一:继承Thread类,重写run方法,调用start开启线程
//总结:注意,线程开启不一定立刻执行,由cpu调度执行
public class TestThread1 extends Thread{
@Override
public void run(){
//run方法线程体
for (int i = 0; i < 20; i++) {
System.out.println("我在看代码" + i);
}
}
public static void main(String[] args) {
//main线程,主线程
//创建一个线程对象
TestThread1 testThread1 = new TestThread1();
//调用start()方法开启线程
/*这里注意一个点:我这里如果调用的时run方法,那么这个线程就会执行完了之后,下面的代码才会执行
而像这里这样开启线程之后,两个线程是同时进行的,所以输入栏那里两种内容同时输出
*/
testThread1.start();
for (int i = 0; i < 1000; i++) {
System.out.println("我在学习多线程" + i);
}
}
}
案例:下载图片
准备:
- 百度搜索commons-io,进入网站
- 下载二进制文件,名字如‘commons-io-2.9.0-bin.zip’
- 解压打开,复制‘commons-io-2.9.0.jar’
- 在项目的com包下建立包'lib'
- 粘贴到'lib'包
- 右键'lib',选择Add as Library,点击OK
- 然后可以看到这个粘贴过去的库可以展开,编程一个资源了
package com.hjq.demo01;
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.net.URL;
//练习Thread,实现多线程同时下载图片
public class TestThread2 extends Thread{
private String url;
private String name;
public TestThread2(String url, String name){
this.url = url;
this.name = name;
}
@Override
public void run(){
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件:" + name);
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2("https://ss2.bdstatic.com/70cFvnSh_Q1YnxGkpoWK1HF6hhy/it/u=4156935006,4147612320&fm=11&gp=0.jpg", "1.jpg");
TestThread2 t2 = new TestThread2("https://ss1.bdstatic.com/70cFuXSh_Q1YnxGkpoWK1HF6hhy/it/u=2965388304,1122214049&fm=11&gp=0.jpg", "2.jpg");
TestThread2 t3 = new TestThread2("https://ss1.bdstatic.com/70cFuXSh_Q1YnxGkpoWK1HF6hhy/it/u=3887457779,2410876180&fm=11&gp=0.jpg", "3.jpg");
t1.start();
t2.start();
t3.start();
}
}
//下载器
class WebDownloader{
//下载方法
public void downloader(String url, String name){
try{
FileUtils.copyURLToFile(new URL(url), new File(name));
} catch (Exception e){
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
2. 实现 Runnable 接口(重点)
推荐使用Runnable对象,因为Java单继承的局限性
- 定义MyRunnable类实现Runnable接口
- 实现run()方法,编写线程执行体
- 创建线程对象,调用start()方法启动线程
package com.hjq.demo01;
public class TestThread3 implements Runnable{
@Override
public void run(){
//run方法线程体
for (int i = 0; i < 200; i++) {
System.out.println("我在看代码" + i);
}
}
public static void main(String[] args) {
//创建runnable接口的实现类对象
TestThread3 testThread3 = new TestThread3();
//创建线程对象,通过线程对象来开启我们的线程,代理
new Thread(testThread3).start();
for (int i = 0; i < 1000; i++) {
System.out.println("我在学习多线程" + i);
}
}
}
package com.hjq.demo01;
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.net.URL;
//练习Thread,实现多线程同时下载图片
public class TestThread2 implements Runnable{
private String url;
private String name;
public TestThread2(String url, String name){
this.url = url;
this.name = name;
}
@Override
public void run(){
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件:" + name);
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2("https://ss2.bdstatic.com/70cFvnSh_Q1YnxGkpoWK1HF6hhy/it/u=4156935006,4147612320&fm=11&gp=0.jpg", "1.jpg");
TestThread2 t2 = new TestThread2("https://ss1.bdstatic.com/70cFuXSh_Q1YnxGkpoWK1HF6hhy/it/u=2965388304,1122214049&fm=11&gp=0.jpg", "2.jpg");
TestThread2 t3 = new TestThread2("https://ss1.bdstatic.com/70cFuXSh_Q1YnxGkpoWK1HF6hhy/it/u=3887457779,2410876180&fm=11&gp=0.jpg", "3.jpg");
new Thread(t1).start();
new Thread(t2).start();
new Thread(t3).start();
}
}
//下载器
class WebDownloader{
//下载方法
public void downloader(String url, String name){
try{
FileUtils.copyURLToFile(new URL(url), new File(name));
} catch (Exception e){
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
小结:
-
继承Thread类
-
子类继承Thread类具备多线程能力
-
启动线程:子类对象.start()
-
不建议使用:避免OOP单继承局限性
-
-
实现Runnable接口
- 实现接口Runnable具有多线程能力
- 启动线程:传入目标对象+Thread对象.start()
- 推荐使用:避免继承局限性,灵活方便,方便同一个对象被多线程使用
最后,来一个火车购票例子
package com.hjq.demo01;
//多个线程同时操作同一个对象
//买火车票的例子
//发现问题:多个线程操作同一个资源的情况下,线程不安全
public class TestThread4 implements Runnable{
private int ticket = 10;
@Override
public void run() {
while (true){
if (ticket <= 0)
break;
//模拟延时
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "拿到了第" + ticket-- + "票");
}
}
public static void main(String[] args) {
TestThread4 ticket = new TestThread4();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}
案例——龟兔赛跑:
这个例子比较典型的展示了实现Runnable接口的优点:这个对象我可以重复使用。
package com.hjq.demo01;
public class Rate implements Runnable{
//胜利者
private static String winner;
@Override
public void run() {
for (int i = 1; i <= 100; i++) {
//如果是兔子,那么每十步休息
if (Thread.currentThread().getName().equals("兔子") && i%10==0){
try {
System.out.println("兔子找个没人的地方睡了");
Thread.sleep(11000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//乌龟每一步都比较慢,故每步都休息
if (Thread.currentThread().getName().equals("乌龟")){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//判断是否结束
boolean flag = gameOver(i);
if (flag){
break;
}
System.out.println(Thread.currentThread().getName() + "-->跑了" + i + "步");
}
}
private boolean gameOver(int steps){
//如果没有胜利者
if (winner != null){
return true;
}
//如果步数达到100,那么胜利者将诞生
if (steps >= 100){
winner = Thread.currentThread().getName();
System.out.println("winner is " + winner);
return true;
}
//如果都没有满足上面条件,那么返回否定
return false;
}
public static void main(String[] args) {
Rate rate = new Rate();
new Thread(rate, "兔子").start();
new Thread(rate, "乌龟").start();
}
}
总结:总的来说,继承Thread类和实现Runable接口的对象都是一样的,但是后者可以被重复利用。
3. 实现 Callable 接口(了解)
- 实现Callable接口,需要返回值类型
- 重写call方法,需要抛出异常
- 创建目标对象
- 创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(1);
- 提交执行:Future
result1 = ser.submit(t1); - 获取结果:boolean r1 = result1 .get();
- 关闭服务:ser.shutdownNow();
package com.hjq.demo01;
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.net.URL;
import java.util.concurrent.*;
//线程创建方法三:实现Callable接口
//优点:
//1.可以定义返回值
//2.可以抛出异常
public class TestCallable implements Callable<Boolean> {
private String url;
private String name;
public TestCallable(String url, String name){
this.url = url;
this.name = name;
}
@Override
public Boolean call(){
WebDownloader2 webDownloader2 = new WebDownloader2();
webDownloader2.downloader(url, name);
System.out.println("下载了文件:" + name);
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
TestCallable t1 = new TestCallable("https://ss2.bdstatic.com/70cFvnSh_Q1YnxGkpoWK1HF6hhy/it/u=4156935006,4147612320&fm=11&gp=0.jpg", "1.jpg");
TestCallable t2 = new TestCallable("https://ss1.bdstatic.com/70cFuXSh_Q1YnxGkpoWK1HF6hhy/it/u=2965388304,1122214049&fm=11&gp=0.jpg", "2.jpg");
TestCallable t3 = new TestCallable("https://ss1.bdstatic.com/70cFuXSh_Q1YnxGkpoWK1HF6hhy/it/u=3887457779,2410876180&fm=11&gp=0.jpg", "3.jpg");
//创建执行服务:
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行
Future<Boolean> r1 = ser.submit(t1);
Future<Boolean> r2 = ser.submit(t2);
Future<Boolean> r3 = ser.submit(t3);
//获取结果
boolean rs1 = r1.get();
boolean rs2 = r2.get();
boolean rs3 = r3.get();
//关闭服务
ser.shutdownNow();
}
}
//下载器
class WebDownloader2{
//下载方法
public void downloader(String url, String name){
try{
FileUtils.copyURLToFile(new URL(url), new File(name));
} catch (Exception e){
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
3. 静态代理模式(Thread和Runnable的恩怨情仇)
在这里,用一个婚庆公司代理结婚的例子说明了一下代理模式;
其实,Runnable接口就像是Marry接口
Thread就像是婚庆公司
直接实现了Runnable接口的就像是结婚人
其实婚庆公司就是代理了结婚人的一些行为
也就是说:
Thread类实现多线程不过是,我这个类实现了Runnable接口,所以我可以帮你去一起做了run这个东西
所以可以看到,继承Thread类的类里面就有run方法,不再需要再自己实现Runnable接口
其实就是我Thread把你写在run里面的东西交给了Runnable,
我Thread帮你总览了一切。
再说:
你看,我这个实现了Runnable接口的东西就是一个可以run的东西,你可以想象它为赛道,也可以想象它是寄生在线程上的东西,这个东西它可以放在线程对象上,让线程把它跑起来。
而且因为这玩意儿只是实现了Runnable接口而不是继承Thread类,所以这个类我可以服用,我只要实例化一次它,就可以把它放到多个线程上,只要在线程的参数里加一个String作为名字,就可以区分不同的对象了。这样就是复用。
package com.hjq.demo01;
//静态代理模式:
//真实对象和代理对象都要实现同一个接口
//代理对象要代理真实角色
//
//好处:
//1.代理对象可以做很多真实对象做不了的事情
//2.真实对象专注做自己的事情
public class StaticProxy {
public static void main(String[] args) {
new MarryCompony(new People()).HappyMarry();
}
}
interface Marry {
void HappyMarry();
}
class People implements Marry{
@Override
public void HappyMarry(){
System.out.println("有人结婚了");
}
}
class MarryCompony implements Marry{
private People people;
public MarryCompony(People people){
this.people = people;
}
@Override
public void HappyMarry(){
before();
this.people.HappyMarry();
after();
}
private void after() {
System.out.println("婚后,收尾款");
}
private void before() {
System.out.println("婚前,布置现场");
}
}
4. Lambda表达式
-
为什么使用Lambda表达式
- 避免匿名内部类定义过多
- 可以让你的代码看起来很简洁
- 去掉了一堆没有意义的代码,只留下核心的逻辑
-
习惯了就不会觉得不好了
-
理解Functional Interface(函数式接口)是学习Java8 lambda表达式的关键所在。
-
函数时接口的定义:
-
任何接口,如果只包含唯一一个抽象方法,那么它就是一个函数式接口。
public interface Runnable{ public abstract void run(); } -
对于函数式接口,我们可以通过lambda表达式来创建该接口的对象。
-
其实质属于函数式编程的概念
(params) -> expression[表达式]
(params) -> statement[语句]
(params) -> { statements }
a -> System.out.println("i like lambda-->" + a);
new Thread( ()->System.out.println("多线程学习。。。。") ).start();
实例如下:
一步一步把原版繁琐的实现简化到使用lambda表达式实现
package com.hjq.demo01;
public class TestLambda {
//静态内部类
static class Like2 implements ILike{
@Override
public void lambda(){
System.out.println("I like lambda2");
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lambda();
like = new Like2();
like.lambda();
//4.局部内部类
class Like3 implements ILike{
@Override
public void lambda(){
System.out.println("I like lambda3");
}
}
like = new Like3();
like.lambda();
//5.匿名内部类,没有类的名称,必须借助接口或者父类
like = new ILike() {
@Override
public void lambda() {
System.out.println("I like lambda4");
}
};
like.lambda();
//6.用lambda简化
like = () -> {
System.out.println("I like lambda5");
};
like.lambda();
}
}
//1.定义一个函数式接口
interface ILike{
void lambda();
}
//2.实现类
class Like implements ILike{
@Override
public void lambda(){
System.out.println("I like lambda");
}
}
简化lambda表达式:
package com.hjq.demo01;
public class TestLambda2 {
public static void main(String[] args) {
ILove love = null;
//简化2:简化括号
love = (a, b, c) -> {
System.out.println(a);
System.out.println(b);
System.out.println(c);
};
love.love(520, 502, 250);
//总结:
//lambda表达式只能在只有一行的情况下省略花括号,如果有多行,那么就用代码块包裹
//前提是接口为函式接口
//只有单个参数则可以圣洛参数类型和括号
//多个参数也可以去掉参数类型,要去掉就都去掉,必须加上括号
}
}
interface ILove{
void love(int a, int b, int c);
}
5. 线程状态
5.1 线程的5种状态
- 初始状态:即单纯地创建一个线程。
- 可运行状态:创建线程后,调用Thread类的start()方法来启动一个线程,即表示线程进入就绪状态。
- 运行状态:当线程获得CPU时间,线程才从就绪状态进入到运行状态。
- 阻塞状态:线程进入运行状态后,可能由于多种原因让线程进入阻塞状态。(调用sleep()方法让线程睡眠,调用wait()方法让线程等待,调用join()方法以及阻塞式IO方法)
- 死亡状态:run()方法的正常退出就让线程进入到死亡状态,还有当一个异常未被捕获而终止了run()方法的执行也将进入到死亡状态。
5.2 线程方法
| 方法 | 说明 |
|---|---|
| setPriority(int newPriority) | 更改线程的优先级 |
| static void sleep(long millis) | 在指定的毫秒数内让当前正在执行的线程休眠 |
| void join() | 线程强制插队 |
| static void yield() | 暂停当前正在执行的线程对象,并执行其他线程 |
| void interrupt() | 中断线程,别用这个方式 |
| boolean isAlive() | 测试线程是否处于活动状态 |
5.3 线程停止
- 不推荐使用JDK提供的stop()、destroy()方法。【已废弃】
- 推荐线程自己停下来
- 建议使用一个标志位进行终止变量,当flag=false,则终止线程运行。
实例如下:
package com.hjq.demo01;
//这种方式是让线程停止的最好的方式
//测试stop
//1.建议线程正常停止——利用次数,不建议死循环
//2.建议使用标志位——设置一个标志位
//3.不要使用stop或者destroy等过时或者JDK不建议使用的方法
public class TestStop implements Runnable{
//设立一个标志位,让线程停止
private boolean flag = true;
@Override
public void run() {
int i = 0;
while (flag){
System.out.println("Thread is running" + i++);
}
}
//设置一个公开的方法操作标志位,转换标志位,使得线程停止
public void stop(){
this.flag = false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for (int i = 0; i < 1000; i++){
System.out.println("main" + i);
if (i == 900){
//调用stop方法切换标志位,让线程停止
testStop.stop();
System.out.println("线程停止了。。。。。");
}
}
}
}
5.4 线程休眠
- sleep(时间)指定当前线程阻塞的毫秒数;
- sleep存在异常InterruptedException;
- sleep时间达到后线程进入就绪状态;
- sleep可以模拟网络延时,倒计时等;
- 每一个对象都有一个锁,sleep不会释放锁;
-
模拟网络延迟
package com.hjq.demo01; //模拟网络延迟:放大问题的发生性。 public class TestSleep implements Runnable{ private int ticket = 10; @Override public void run() { while (true){ if (ticket <= 0) break; //模拟延时 try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "拿到了第" + ticket-- + "票"); } } public static void main(String[] args) { TestSleep ticket = new TestSleep(); new Thread(ticket,"小明").start(); new Thread(ticket,"老师").start(); new Thread(ticket,"黄牛党").start(); } } -
模拟倒计时
package com.hjq.demo01; public class TestSleep2 { public static void main(String[] args) { try { tenDown(); } catch (InterruptedException e) { e.printStackTrace(); } } public static void tenDown() throws InterruptedException { int num = 10; while (true){ Thread.sleep(1000); System.out.println(num--); if (num <= 0) break; } } }
5.5 线程礼让
- 礼让线程,让当前正在执行的线程重新回到就绪状态,在就绪列表里重新和别的线程竞争cpu
- cpu重新调度,礼让不一定成功,得看cpu
package com.hjq.demo01;
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield, "a").start();
new Thread(myYield, "b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "线程开始");
Thread.yield();
System.out.println(Thread.currentThread().getName() + "线程结束");
}
}
5.6 线程强制执行
- Join合并线程,待此线程执行完成后,再执行其他线程,其他线程阻塞
- 可以想象成插队
package com.hjq.demo01;
public class TestJoin implements Runnable{
@Override
public void run() {
for (int i = 0; i < 500; i++) {
System.out.println("VIP线程来了执行中-->" + i);
}
}
public static void main(String[] args) {
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
for (int i = 0; i < 500; i++) {
if (i == 200) {
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("main-->" + i);
}
}
}
5.7 观测线程状态
Thread.State
线程状态。线程可以处于以下状态之一:
NEW
尚未启动的线程处于此状态。RUNNABLE
在Java虚拟机中执行的线程处于此状态。BLOCKED
被阻塞等待监视器锁定的线程处于此状态。WAITING
正在等待另一个线程执行特定动作的线程处于此状态。TIMED_WAITING
正在等待另一个线程执行动作达到指定等待时间的线程处于此状态。TERMINATED
已退出的线程处于此状态。
一个线程可以在给定时间点处于一个状态。 这些状态是不反映任何操作系统线程状态的虚拟机状态。
package com.hjq.demo01;
public class TestState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("///////");
});
//观察状态
Thread.State state = thread.getState();
System.out.println(state); //NEW
//观察启动后
thread.start(); //启动线程
state = thread.getState();
System.out.println(state); //Run
while (state != Thread.State.TERMINATED){//线程不停止就一直输出状态
Thread.sleep(100);
state = thread.getState();//更新线程状态
System.out.println(state);//输出状态
}
}
}
5.8 线程的优先级
- Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度器按照优先级决定应该调度哪个线程来执行。
- 线程的优先级用数字表示,范围从1~10
- Thread.MIN_PRIORITY = 1;
- Thread.MAX_PRIORITY = 10;
- Thread.NORM_PRIORITY = 5;
- 使用以下方式改变或获取优先级:
- getPriority()
- setPriotiry(int xxx)
ps:
- 并不是说我优先级高就一定先执行,比如说我有100张彩票而你只有1张,但不是我会一定中,只不过我中的概率大很多。
- 优先级的设定建议在start()调度前;
- 优先级低的线程先执行叫“性能倒置”
package com.hjq.demo01;
public class TestPriority {
public static void main(String[] args) {
//主线程为默认优先级
System.out.println("main-->" + Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority, "t1");
Thread t2 = new Thread(myPriority, "t2");
Thread t3 = new Thread(myPriority, "t3");
Thread t4 = new Thread(myPriority, "t4");
Thread t5 = new Thread(myPriority, "t5");
Thread t6 = new Thread(myPriority, "t6");
//先设置优先级,再启动
t1.setPriority(Thread.MAX_PRIORITY);
t2.setPriority(8);
t3.setPriority(7);
t4.setPriority(Thread.NORM_PRIORITY);
t5.setPriority(3);
t6.setPriority(Thread.MIN_PRIORITY);
t1.start();
t2.start();
t3.start();
t4.start();
t5.start();
t6.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "的优先级-->" + Thread.currentThread().getPriority());
}
}
5.9 守护(daemon)线程
- 线程分为用户线程和守护线程
- 虚拟机必须确保用户线程执行完毕
- 虚拟机不用等待守护线程执行完毕
- 如,后台记录操作日志,监控内存,垃圾回收等待。。
package com.hjq.demo01;
//测试守护线程
//上帝守护你
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true); //默认是false 表示是用户线程 , 正常的线程都是用户线程。。。
thread.start(); //上帝线程启动
new Thread(you).start(); //你 用户线程启动。。。
}
}
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("God bless You...");
}
}
}
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("You are living happily");
}
System.out.println("You say goodbye to the world");
}
}
6. 线程同步
不论是同步方法,还是同步块,本质上就是用 synchronized 关键字把资源给锁起来
锁住方法的本质是锁住 this 对象,如果没锁对,比如说我锁住了这个方法,但是操作的资源在这个方法外的对象,那么还是会不安全。
6.1 理论
多个线程操作同一个资源
线程同步
并发:同一个对象被多个线程同时操作
- 现实生活中,我们会遇到“同一个资源,多个人都想使用”的问题。比如:食堂排队打饭,每个人都想打饭,最天然的解决方法就是:排队,一个一个来
- 处理多线程问题时,多个线程访问同一个对象,并且某些线程还想修改这个对象。这时候我们就需要线程同步。线程同步其实就是一种等待机制,多个需要同时访问此对象的线程进入这个对象的等待池形成队列,等待前面线程使用完毕,下一个线程再使用
队列和锁
形成条件:队列 + 锁
- 由于同意进程的多个线程共享同一块存储空间,在带来方便的同时,也带来了访问冲突问题,为了保证数据在方法中被访问时的正确性,在访问时加入锁机制synchronized,当一个线程获得对象的排他锁,独占资源,其他线程必须等待,使用后释放锁即可,存在一下问题:
- 一个线程持有锁会导致其他所有需要此锁的线程挂起;
- 在多线程竞争下,加锁,释放锁会导致比较多的上下文切换和调度延时,引起性能问题;
- 如果一个优先级高的线程等待一个优先级低的线程释放锁,会导致优先级倒置,引起性能问题。
不安全案例
//不安全买票
public class Demo24_UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
new Thread(buyTicket, "张三").start();
new Thread(buyTicket, "李四").start();
new Thread(buyTicket, "王五").start();
}
}
class BuyTicket implements Runnable {
//票
private int ticketNums = 10;
boolean flag = true;
@Override
public void run() {
//买票
while (flag) {
try {
buy();
} catch (Exception e) {
e.printStackTrace();
}
}
}
//买票
private void buy() {
//判断是否有票
if (ticketNums <= 0) {
flag = false;
return;
}
//延迟
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
//买票
System.out.println(Thread.currentThread().getName() + "拿到" + ticketNums--);
}
}
/**
* 不安全的取钱
*/
public class Demo25_UnsafeBank {
public static void main(String[] args) {
Account account = new Account(100, "结婚基金");
Drawing you = new Drawing(account, 50, "展堂");
Drawing girlfriend = new Drawing(account, 100, "sad");
you.start();
girlfriend.start();
}
}
//账户
class Account {
int money;//余额
String cardName;//卡名
public Account(int money, String cardName) {
this.money = money;
this.cardName = cardName;
}
}
//银行:模拟取款
class Drawing extends Thread {
Account account;//账户
int drawingMoney;//取金额
int nowMoney;//你手里的钱
public Drawing(Account account, int drawingMoney, String name) {
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
//判断是否有钱
if (account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName() + "余额不足,不能进行取钱");
return;
}
try {
Thread.sleep(1000);//放大问题的发生性
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内金额 = 余额-你的钱
account.money = account.money - drawingMoney;
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.cardName + "余额为:" + account.money);
//this.getName()==Thread.currentThread().getName()
System.out.println(this.getName() + "手里的钱:" + nowMoney);
}
}
//线程不安全的集合
public class Demo26_UnsafeList {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (int i = 0; i < 1000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
System.out.println(list.size());
}
}
6.2 同步方法
-
由于我们可以通过 private 关键字来保证数据对象只能被方法访问,所以我们只需要针对方法提出一套机制,这套机制就是 synchronized 关键字,它包括两种用法:
-
synchronized 方法
public synchronized void method(int args){} -
synchronized 块
synchronized (被锁的资源){ 代码块; }
-
-
synchronized 方法控制对“对象”的访问,每个对象对应一把锁,每个synchronized 方法都必须获得调用该方法的对象的锁才能执行,否则线程会阻塞,方法一旦执行,就独占该锁,知道该方法返回才能释放锁,后面被阻塞的线程才能获得这个锁,继续执行
缺陷:若将一个大的方法申明为 synchronized 将会影响效率
实现:
package com.hjq.syn;
//不安全买票
public class Demo24_UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
new Thread(buyTicket, "张三").start();
new Thread(buyTicket, "李四").start();
new Thread(buyTicket, "王五").start();
}
}
class BuyTicket implements Runnable {
//票
private int ticketNums = 10;
boolean flag = true;
@Override
public void run() {
//买票
while (flag) {
try {
buy();
} catch (Exception e) {
e.printStackTrace();
}
}
}
//买票
private synchronized void buy() {
//判断是否有票
if (ticketNums <= 0) {
flag = false;
return;
}
//延迟
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
//买票
System.out.println(Thread.currentThread().getName() + "拿到" + ticketNums--);
}
}
6.3 同步块
- 同步块:synchronized (Obj) {}
- Obj 称之为 同步监视器
- Obj 可以是任何对象,但是推荐使用共享资源作为同步监视器
- 同步方法中无需指定同步监视器,因为同步方法的同步监视器就是 this ,就是这个对象本身,或者是 class
- 同步监视器的执行过程
- 第一个线程访问,锁定同步监视器,执行其中代码
- 第二个线程访问,发现同步监视器被锁定,无法访问
- 第一个线程访问完毕,解锁同步监视器
- 第二个线程访问,发现同步监视器没有锁,然后锁定并访问
实现:
package com.hjq.syn;
/**
* 不安全的取钱
*/
public class Demo25_UnsafeBank {
public static void main(String[] args) {
Account account = new Account(100, "结婚基金");
Drawing you = new Drawing(account, 50, "你");
Drawing girlfriend = new Drawing(account, 100, "女朋友");
you.start();
girlfriend.start();
}
}
//账户
class Account {
int money;//余额
String cardName;//卡名
public Account(int money, String cardName) {
this.money = money;
this.cardName = cardName;
}
}
//银行:模拟取款
class Drawing extends Thread {
Account account;//账户
int drawingMoney;//取金额
int nowMoney;//你手里的钱
public Drawing(Account account, int drawingMoney, String name) {
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
synchronized (account){
//判断是否有钱
if (account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName() + "余额不足,不能进行取钱");
return;
}
try {
Thread.sleep(1000);//放大问题的发生性
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内金额 = 余额-你的钱
account.money = account.money - drawingMoney;
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.cardName + "余额为:" + account.money);
//this.getName()==Thread.currentThread().getName()
System.out.println(this.getName() + "手里的钱:" + nowMoney);
}
}
}
package com.hjq.syn;
import java.util.ArrayList;
import java.util.List;
//线程不安全的集合
public class Demo26_UnsafeList {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
synchronized (list){
list.add(Thread.currentThread().getName());
}
}).start();
}
try {
Thread.sleep(300);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
JUC包的 CopyOnWriteArrayList 实现:
package com.hjq.syn;
import java.util.concurrent.CopyOnWriteArrayList;
//测试JUC安全类型的集合
public class TestJUC {
public static void main(String[] args) {
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
6.4 死锁
死锁:多个线程各自占有一些共享资源,并且互相等待其他线程占有的资源才能运行,而导致两个或者多个线程都在等待对方释放资源,都停止执行的情形,某个同步块同时拥有“两个以上对象的锁”时,就可能会发生“死锁”的问题。
案例:
/**
* 死锁:多个线程互相抱着对方需要的资源,然后形成僵持
* 解决:一个锁只锁一个对象
*/
class Demo31_DeadLock {
public static void main(String[] args) {
Makeup makeup = new Makeup(0, "灰姑娘");
Makeup makeup1 = new Makeup(1, "白雪公主");
makeup.start();
makeup1.start();
}
}
//口红
class Lipstick { }
//镜子
class Mirror { }
class Makeup extends Thread {
//需要的资源只有一份,用static保证只有一份
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;//选择
String girlName;//使用化妆品的人
public Makeup(int choice, String girlName) {
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private void makeup() throws InterruptedException {
if (choice == 0) {
synchronized (lipstick) {//获得口红的锁
System.out.println(this.girlName + "获得口红的锁");
Thread.sleep(1000);
synchronized (mirror) {//一秒钟后想获得镜子
System.out.println(this.girlName + "获得镜子的锁");
}
}
} else {
synchronized (mirror) {//获得口红镜子
System.out.println(this.girlName + "获得镜子的锁");
Thread.sleep(2000);
synchronized (lipstick) {//二秒钟后想获得的锁
System.out.println(this.girlName + "获得口红的锁");
}
}
}
}
}
解决方法:
/**
* 死锁:多个线程互相抱着对方需要的资源,然后形成僵持
* 解决:一个锁只锁一个对象
*/
class Demo31_DeadLock {
public static void main(String[] args) {
Makeup makeup = new Makeup(0, "灰姑娘");
Makeup makeup1 = new Makeup(1, "白雪公主");
makeup.start();
makeup1.start();
}
}
//口红
class Lipstick { }
//镜子
class Mirror { }
class Makeup extends Thread {
//需要的资源只有一份,用static保证只有一份
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;//选择
String girlName;//使用化妆品的人
public Makeup(int choice, String girlName) {
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private void makeup() throws InterruptedException {
if (choice == 0) {
synchronized (lipstick) {//获得口红的锁
System.out.println(this.girlName + "获得口红的锁");
Thread.sleep(1000);
}
synchronized (mirror) {//一秒钟后想获得镜子
System.out.println(this.girlName + "获得镜子的锁");
}
} else {
synchronized (mirror) {//获得口红镜子
System.out.println(this.girlName + "获得镜子的锁");
Thread.sleep(2000);
}
synchronized (lipstick) {//二秒钟后想获得的锁
System.out.println(this.girlName + "获得口红的锁");
}
}
}
}
死锁解决方法:
产生死锁的4种必要条件:
- 互斥条件:一个资源每次只能被一个进程使用。
- 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
- 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
- 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
只要想办法破其中的任意一个或多个条件就可以避免死锁发生。
6.5 Lock(锁)
- JDK 5.0 开始,Java提供更强大的线程同步机制——通过显式定义同步锁对象来实现同步。同步锁使用lock对象充当
- java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具。锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象
- ReentrantLock类实现了Lock,它拥有与 synchronized 相同的并发性和内存语义,在实现线程安全的控制中,比较常用的是ReentrantLock,可以显式加锁、释放锁。
class A{
private final ReentrantLock = new ReentrantLock();
public void m(){
lock.lock();
try{
//保证线程安全的代码
}finally{
lock.unlock();
//如果同步代码有异常,要将unlock()写入finally语句块
}
}
}
实现:
import java.util.concurrent.locks.ReentrantLock;
public class TestLock {
public static void main(String[] args) {
MyLock myLock = new MyLock();
new Thread(myLock).start();
new Thread(myLock).start();
new Thread(myLock).start();
}
}
class MyLock implements Runnable{
int ticket = 10;
//定义lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true){
try{
lock.lock();//加锁
if (ticket > 0){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticket--);
}else {
break;
}
}finally {
lock.unlock(); //解锁
}
}
}
}
synchronized 与 Lock 的对比
- Lock是显式锁(要手动开和关),synchronized 是隐式锁,出了作用域自动释放
- Lock只有代码块锁,synchronized 有代码块锁和方法锁
- Lock性能更好,有更好的拓展性(提供更多的子类)
- 优先使用顺序:
- Lock > 同步代码块 > 同步方法
7. 线程协作
生产者消费者模式的问题
应用场景
- 假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费
- 如果仓库中没有产品,则生产者将产品放入仓库,否则停止生产并等待,直到仓库中的产品被消费者取走消费为止
- 如果仓库中放有产品,则消费者可以将产品取走消费,否则停止消费并等待,知道仓库中再次放入产品为止
7.1 线程通信方法
- Java提供了几个方法解决线程之间通信的问题
| 方法名 | 作用 |
|---|---|
| wait() | 表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁 |
| wait(long timeout) | 指定等待的毫秒数 |
| notify() | 唤醒一个处于等待状态的线程 |
| notifyAll() | 唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程有限调度 |
ps:都是Object类的方法,都只能在同步方法或者同步代码块中使用
7.2 线程通信-分析
这是一个线程同步问题,生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件:
- 对于生产者,没有生产产品之前,要通知消费者等待,而生产了产品之后,又需要马上通知消费者消费
- 对于消费者,在消费之后,要通知生产者已经结束消费,需要生产新的产品以供消费
- 在生产消费问题中,仅有synchronized是不够的
- synchronized可阻止并发更新同一个共享资源,实现了同步
- synchronized不能用来实现不同线程之间的消息传递(通信)
7.3 线程通信-问题解决方式
解决方法一:管程法
并发协作模型”生产者/消费者模式“——> 管城法
- 生产者:负责生产数据的模块(可能是方法、对象、进程、线程)
- 消费者:负责处理数据的模块(可能是方法、对象、进程、线程)
- 缓冲区:消费者不能直接使用生产者的数据,他们之间有个”缓冲区“
生产者将生产好的数据放入缓冲区,消费者从缓冲区拿出数据
/**
* 测试:生产者消费者模型-->利用缓冲区解决:管程法
*/
public class Demo33_ThreadPC {
public static void main(String[] args) {
SynContainer synContainer = new SynContainer();
new Producer(synContainer).start();
new Consumer(synContainer).start();
}
}
//生产者
class Producer extends Thread {
//容缓冲区
SynContainer container;
public Producer(SynContainer container) {
this.container = container;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
container.push(new Product(i));
System.out.println("生产了" + i + "件产品");
}
}
}
//消费者
class Consumer extends Thread {
//容缓冲区
SynContainer container;
public Consumer(SynContainer container) {
this.container = container;
}
//消费
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了-->" + container.pop().id + "件产品");
}
}
}
//产品
class Product {
int id;//产品编号
public Product(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer {
//需要一个容器大小
Product[] products = new Product[10];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Product product) {
//如果容器满了,需要等待消费者消费
/*如果是if的话,假如消费者1消费了最后一个,这是index变成0此时释放锁被消费者2拿到而不是生产者拿到,这时消费者的wait是在if里所以它就直接去消费index-1下标越界,如果是while就会再去判断一下index得值是不是变成0了*/
while (count == products.length) {
//通知消费者消费,等待生产
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有满,需要丢入产品
products[count] = product;
count++;
//通知消费者消费
this.notifyAll();
}
//消费者消费产品
public synchronized Product pop() {
//判断是否能消费
while (count <= 0) {
//等待生产者生产
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果可以消费
count--;
Product product = products[count];
//吃完了 通知生产者生产
this.notifyAll();
return product;
}
}
解决方式二:信号灯法
并发协作模型”生产者/消费者模式“——> 信号灯法
public class testPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Watcher(tv).start();
new Player(tv).start();
}
}
//产品-->节目
class TV {
//演员表演,观众等待
//观众观看,演员等待
String voice; //表演的节目
boolean flag = true;
//表演
public synchronized void play(String voice) {
if(!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了" + voice);
//通知观众观看
this.voice = voice;
this.notifyAll();
this.flag = !flag;
}
//观看
public synchronized void watch(){
if(flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观众观看了" + voice);
//通知演员表演
this.notifyAll();
this.flag = !flag;
}
}
class Player extends Thread {
private TV tv = null;
public Player(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
tv.play("表演了" + i + "号节目");
}
}
}
class Watcher extends Thread {
private TV tv = null;
public Watcher(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
tv.watch();
}
}
}
8. 使用线程池
-
背景: 经常创建和销毁,使用量特别大的资源,比如并发情况下的线程,对性能影响很大
-
思路: 提前创建好多个线程,放入线程池中,使用时直接获取,使用完毕放回池中,可以避免频繁的创建销毁,实现重复利用,类似生活中的工共交通工具
-
好处
- 提高了响应速度(减少了创建新线程的时间)
- 降低资源消耗(重复利用线程池中线程,不需要每次都创建)
- 便于线程管理(…)
- corePoolSize: 核心池的大小
- maximumPoolSize: 最大线程数
- keepAliveTime: 线程没有任务时最多保持多长时间后会终止
使用线程池
- JDK 5.0起提供了线程池相关API:ExecutorService 和 Executors
- ExecutorService:真正的线程池接口。常见子类TreadPoolExecutor
- void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
Future submit(Callable task):执行任务,有返回值,一般用来执行Callable - void shutdown():关闭连接池
- Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池
ps:前面使用Callable创建线程的方法便是利用了线程池,这里说一下Runnable的方式
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
//newFixedThreadPool 参数为线程池大小
ExecutorService service = Executors.newFixedThreadPool(10);
//执行
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//关闭链接
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
总结:
-
创建线程
- Thread 类
- Runnable 接口
- Callable 接口
-
线程状态 -> Thread.State
-
线程方法
- 线程停止:最好用标志位操作
- 线程休眠:Thread.sleep(long millis);
- 线程礼让:Thread.yield();
- 线程强制执行:Thread.join();
- 线程的优先级:
- Thread.getPriority();
- Thread.setPriority();
- 设置守护线程:Thread.setDaemon(true);
-
线程同步:
- syn同步方法
- syn同步块
- Lock
优先级:Lock > 同步块 > 同步方法
-
线程通信:
- wait()、wait(long timeout)
- notify()、notifyAll()
-
线程池使用:
- ExecutorService
- Executors

浙公网安备 33010602011771号