第13课——栈的应用实战
几乎所有的编译器都具有检测括号是否匹配的能力
编译器中的括号检测能力是如何实现的呢?


匹配函数:
int match(char left, char right)
{
int ret = 0;
switch(left)
{
case '<':
ret = (right == '>');
break;
case '(':
ret = (right == ')');
break;
case '[':
ret = (right == ']');
break;
case '{':
ret = (right == '}');
break;
case '\'':
ret = (right == '\'');
break;
case '\"':
ret = (right == '\"');
break;
default:
ret = 0;
break;
}
return ret;
}
代码复用链式栈的,main函数更改如下:
match
实例二:用栈实现计算:

后缀表达式:

中缀或后缀?
中缀表达式符合人类的阅读和思维习惯;
后缀表达式符合计算机的“运算习惯”;
如何将中缀表达式转化为后缀表达式?
解决方案

算法框架

算法实现:
数字判断,操作符判断,左括弧、右括弧判断,优先级判断,输出函数实现如下:
int isNumber(char c)
{
return ('0' <= c) && (c <= '9');
}
int isOperator(char c)
{
return (c == '+') || (c == '-') || (c == '*') || (c == '/');
}
int isLeft(char c)
{
return (c == '(');
}
int isRight(char c)
{
return (c == ')');
}
int priority(char c)
{
int ret = 0;
if( (c == '+') || (c == '-') )
{
ret = 1;
}
if( (c == '*') || (c == '/') )
{
ret = 2;
}
return ret;
}
void output(char c)
{
if( c != '\0' )
{
printf("%c", c);
}
}
中缀转后缀函数:
void transform(const char* exp)
{
LinkStack* stack = LinkStack_Create();
int i = 0;
while( exp[i] != '\0' )
{
if( isNumber(exp[i]) )
{
output(exp[i]);
}
else if( isOperator(exp[i]) )
{
while( priority(exp[i]) <= priority((char)(int)LinkStack_Top(stack)) )
{
output((char)(int)LinkStack_Pop(stack));
}
LinkStack_Push(stack, (void*)(int)exp[i]);
}
else if( isLeft(exp[i]) )
{
LinkStack_Push(stack, (void*)(int)exp[i]);
}
else if( isRight(exp[i]) )
{
char c = '\0';
while( !isLeft((char)(int)LinkStack_Top(stack)) )
{
output((char)(int)LinkStack_Pop(stack));
}
LinkStack_Pop(stack);
}
else
{
printf("Invalid expression!");
break;
}
i++;
}
while( (LinkStack_Size(stack) > 0) && (exp[i] == '\0') )
{
output((char)(int)LinkStack_Pop(stack));
}
LinkStack_Destroy(stack);
}
main函数及运行结果如下:

中缀转后缀完成,那计算机是怎样基于后缀表达式进行计算的呢?
解决方案:

算法框架:

数字的判断,操作符的判断,执行操作函数。
int isNumber(char c)
{
return ('0' <= c) && (c <= '9');
}
int isOperator(char c)
{
return (c == '+') || (c == '-') || (c == '*') || (c == '/');
}
int value(char c)
{
return (c - '0');
}
int express(int left, int right, char op)
{
int ret = 0;
switch(op)
{
case '+':
ret = left + right;
break;
case '-':
ret = left - right;
break;
case '*':
ret = left * right;
break;
case '/':
ret = left / right;
break;
default:
break;
}
return ret;
}
计算函数实现:
int compute(const char* exp)
{
LinkStack* stack = LinkStack_Create();
int ret = 0;
int i = 0;
while( exp[i] != '\0' )
{
if( isNumber(exp[i]) )
{
LinkStack_Push(stack, (void*)value(exp[i]));
}
else if( isOperator(exp[i]) )
{
int right = (int)LinkStack_Pop(stack);
int left = (int)LinkStack_Pop(stack);
int result = express(left, right, exp[i]);
LinkStack_Push(stack, (void*)result);
}
else
{
printf("Invalid expression!");
break;
}
i++;
}
if( (LinkStack_Size(stack) == 1) && (exp[i] == '\0') )
{
ret = (int)LinkStack_Pop(stack);
}
else
{
printf("Invalid expression!");
}
LinkStack_Destroy(stack);
return ret;
}
main函数及运行结果如下:

小结:

posted on 2019-12-05 13:51 blogernice 阅读(139) 评论(0) 收藏 举报

浙公网安备 33010602011771号