9.19 MapReduce实例
例子:WordCount v2.0
这里是一个更全面的WordCount例子,它使用了我们已经讨论过的很多Map/Reduce框架提供的功能。
运行这个例子需要HDFS的某些功能,特别是 DistributedCache相关功能。因此这个例子只能运行在 伪分布式 或者 完全分布式模式的 Hadoop上。
源代码
| WordCount.java | |
|---|---|
| 1. | package org.myorg; |
| 2. | |
| 3. | import java.io.*; |
| 4. | import java.util.*; |
| 5. | |
| 6. | import org.apache.hadoop.fs.Path; |
| 7. | import org.apache.hadoop.filecache.DistributedCache; |
| 8. | import org.apache.hadoop.conf.*; |
| 9. | import org.apache.hadoop.io.*; |
| 10. | import org.apache.hadoop.mapred.*; |
| 11. | import org.apache.hadoop.util.*; |
| 12. | |
| 13. | public class WordCount extends Configured implements Tool { |
| 14. | |
| 15. | public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { |
| 16. | |
| 17. | static enum Counters { INPUT_WORDS } |
| 18. | |
| 19. | private final static IntWritable one = new IntWritable(1); |
| 20. | private Text word = new Text(); |
| 21. | |
| 22. | private boolean caseSensitive = true; |
| 23. | private Set<String> patternsToSkip = new HashSet<String>(); |
| 24. | |
| 25. | private long numRecords = 0; |
| 26. | private String inputFile; |
| 27. | |
| 28. | public void configure(JobConf job) { |
| 29. | caseSensitive = job.getBoolean("wordcount.case.sensitive", true); |
| 30. | inputFile = job.get("map.input.file"); |
| 31. | |
| 32. | if (job.getBoolean("wordcount.skip.patterns", false)) { |
| 33. | Path[] patternsFiles = new Path[0]; |
| 34. | try { |
| 35. | patternsFiles = DistributedCache.getLocalCacheFiles(job); |
| 36. | } catch (IOException ioe) { |
| 37. | System.err.println("Caught exception while getting cached files: " + StringUtils.stringifyException(ioe)); |
| 38. | } |
| 39. | for (Path patternsFile : patternsFiles) { |
| 40. | parseSkipFile(patternsFile); |
| 41. | } |
| 42. | } |
| 43. | } |
| 44. | |
| 45. | private void parseSkipFile(Path patternsFile) { |
| 46. | try { |
| 47. | BufferedReader fis = new BufferedReader(new FileReader(patternsFile.toString())); |
| 48. | String pattern = null; |
| 49. | while ((pattern = fis.readLine()) != null) { |
| 50. | patternsToSkip.add(pattern); |
| 51. | } |
| 52. | } catch (IOException ioe) { |
| 53. | System.err.println("Caught exception while parsing the cached file '" + patternsFile + "' : " + StringUtils.stringifyException(ioe)); |
| 54. | } |
| 55. | } |
| 56. | |
| 57. | public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { |
| 58. | String line = (caseSensitive) ? value.toString() : value.toString().toLowerCase(); |
| 59. | |
| 60. | for (String pattern : patternsToSkip) { |
| 61. | line = line.replaceAll(pattern, ""); |
| 62. | } |
| 63. | |
| 64. | StringTokenizer tokenizer = new StringTokenizer(line); |
| 65. | while (tokenizer.hasMoreTokens()) { |
| 66. | word.set(tokenizer.nextToken()); |
| 67. | output.collect(word, one); |
| 68. | reporter.incrCounter(Counters.INPUT_WORDS, 1); |
| 69. | } |
| 70. | |
| 71. | if ((++numRecords % 100) == 0) { |
| 72. | reporter.setStatus("Finished processing " + numRecords + " records " + "from the input file: " + inputFile); |
| 73. | } |
| 74. | } |
| 75. | } |
| 76. | |
| 77. | public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { |
| 78. | public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { |
| 79. | int sum = 0; |
| 80. | while (values.hasNext()) { |
| 81. | sum += values.next().get(); |
| 82. | } |
| 83. | output.collect(key, new IntWritable(sum)); |
| 84. | } |
| 85. | } |
| 86. | |
| 87. | public int run(String[] args) throws Exception { |
| 88. | JobConf conf = new JobConf(getConf(), WordCount.class); |
| 89. | conf.setJobName("wordcount"); |
| 90. | |
| 91. | conf.setOutputKeyClass(Text.class); |
| 92. | conf.setOutputValueClass(IntWritable.class); |
| 93. | |
| 94. | conf.setMapperClass(Map.class); |
| 95. | conf.setCombinerClass(Reduce.class); |
| 96. | conf.setReducerClass(Reduce.class); |
| 97. | |
| 98. | conf.setInputFormat(TextInputFormat.class); |
| 99. | conf.setOutputFormat(TextOutputFormat.class); |
| 100. | |
| 101. | List<String> other_args = new ArrayList<String>(); |
| 102. | for (int i=0; i < args.length; ++i) { |
| 103. | if ("-skip".equals(args[i])) { |
| 104. | DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf); |
| 105. | conf.setBoolean("wordcount.skip.patterns", true); |
| 106. | } else { |
| 107. | other_args.add(args[i]); |
| 108. | } |
| 109. | } |
| 110. | |
| 111. | FileInputFormat.setInputPaths(conf, new Path(other_args.get(0))); |
| 112. | FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1))); |
| 113. | |
| 114. | JobClient.runJob(conf); |
| 115. | return 0; |
| 116. | } |
| 117. | |
| 118. | public static void main(String[] args) throws Exception { |
| 119. | int res = ToolRunner.run(new Configuration(), new WordCount(), args); |
| 120. | System.exit(res); |
| 121. | } |
| 122. | } |
| 123. |
运行样例
输入样例:
$ bin/hadoop dfs -ls /usr/joe/wordcount/input/
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World, Bye World!
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop, Goodbye to hadoop.
运行程序:
$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output
输出:
$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop, 1
Hello 2
World! 1
World, 1
hadoop. 1
to 1
注意此时的输入与第一个版本的不同,输出的结果也有不同。
现在通过DistributedCache插入一个模式文件,文件中保存了要被忽略的单词模式。
$ hadoop dfs -cat /user/joe/wordcount/patterns.txt
\.
\,
\!
to
再运行一次,这次使用更多的选项:
$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount -Dwordcount.case.sensitive=true /usr/joe/wordcount/input /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt
应该得到这样的输出:
$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 1
Hello 2
World 2
hadoop 1
再运行一次,这一次关闭大小写敏感性(case-sensitivity):
$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount -Dwordcount.case.sensitive=false /usr/joe/wordcount/input /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt
输出:
$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
bye 1
goodbye 1
hadoop 2
hello 2
world 2
程序要点
通过使用一些Map/Reduce框架提供的功能,WordCount的第二个版本在原始版本基础上有了如下的改进:
- 展示了应用程序如何在Mapper (和Reducer)中通过configure方法 修改配置参数(28-43行)。
- 展示了作业如何使用DistributedCache 来分发只读数据。 这里允许用户指定单词的模式,在计数时忽略那些符合模式的单词(104行)。
- 展示Tool接口和GenericOptionsParser处理Hadoop命令行选项的功能 (87-116, 119行)。
- 展示了应用程序如何使用Counters(68行),如何通过传递给map(和reduce) 方法的Reporter实例来设置应用程序的状态信息(72行)。

浙公网安备 33010602011771号