上证指数
1.数据处理模块
- 保存为 sh.py,保存位置 …\Lib\site-packages,这样以后调用直接 import sh.py 即可
# -*- coding: utf-8 -*- # sh.py class sh: # 本地数据库连接信息初始化,用 pyodbc 连接只需三个信息 def __init__(self, user='sa', password='123456', dsn='XiTongDSN'): self.user = user self.password = password self.dsn = dsn import sqlalchemy # 建立数据库连接引擎,存取数据库需用到 self.engine = sqlalchemy.create_engine('mssql+pyodbc://'+self.user+':'+self.password+'@'+self.dsn) # 从 tushare.org 下载上证指数 sh 数据 def get_url(self): import tushare import pandas dataframe = tushare.get_hist_data('sh') # 由于 dataframe 存入 SQL Server 时 index 会报错,那就灵活处理下 # 把 index 复制成列 date 插到最后一列 index = list(dataframe['open'].index) dataframe['date'] = pandas.Series(index, index) pandas.DataFrame(dataframe, index) # 我只需列(开盘,最高,收盘,最低,成交量,日期),其他列统统删掉好了 dataframe.drop(['price_change', 'p_change', 'ma5', 'ma10', 'ma20', 'v_ma5', 'v_ma10', 'v_ma20'], axis=1, inplace=True) # 将处理完的 dataframe 存入到本地数据库 dataframe.to_sql('sh', self.engine, if_exists='replace', index=False) # 调用本地数据库上证指数数据 sh def get_sql(self): import pandas connection = self.engine.connect() data = pandas.read_sql_table('sh', connection) # 做处理时,由于 date 不连续且无什么意义,直接用计数当 date 用好了 index = list(data['open'].index) o = data['open'] h = data['high'] c = data['close'] l = data['low'] volume = data['volume'] return index, o, h, c, l, volume
- 调用 sh.py
# -*- coding: utf-8 -*- # 清屏 import os clearscreen = os.system('cls') # 调用 sh.py 模块 import sh # 获取 sh 数据,先模块实例化 SH = sh.sh() ''' # 下载数据到本地数据库 SH.get_url() ''' # 调取数据库表 sh 数据 index, o, h, c, l, volume = SH.get_sql()
2.图形绘制模块
# -*- coding: utf-8 -*- # 清屏 import os clearscreen = os.system('cls') # 调用模块 import sh # 获取 sh 数据,先模块实例化 SH = sh.sh() ''' # 下载数据到本地数据库 SH.get_url() ''' # 调取数据库表 sh 数据 index, o, h, c, l, volume = SH.get_sql() # 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 载入绘图模块 import matplotlib.pyplot as plot from matplotlib.finance import candlestick_ochl # 根据需要按列合并成一个 quotes = [] for i in range(0, len(index)): quotes.append((index[i], o[i], c[i], h[i], l[i], volume[i])) # 获取图表实例 figure = plot.figure('Made by DengChaohai') # 上图 subplot1 = figure.add_subplot(211, title='Index of Shanghai', xlabel='index of date', ylabel='index of Shanghai', xlim=[min(index), max(index)]) plot.grid(True, axis='both') # K 线图 candlestick_ochl(subplot1, quotes, colorup='r', colordown='g') # 成交量 bar 图,为了好看点,进行了缩放处理 b11 = subplot1.bar(left=index, height=[i*100/min(volume) for i in volume], bottom=0, width=1, color='c', edgecolor='c') # 下图 subplot2 = figure.add_subplot(212, title='Singal of Buy or Sell', xlabel='index of date', ylabel='index of Shanghai', xlim=[min(index), max(index)]) plot.grid(True, axis='both') # open 线图 subplot2.plot(o, 'g') # 自定义加权价 weighting price wp = [] for i in range(0, len(index)): wp.append(o[i]*2/7+c[i]*3/7+h[i]/7+l[i]/7) # weighting price 线图 subplot2.plot(wp, 'r') # 差价 bar 图,为好看同意进行了缩放 subplot2.bar(left=index, height=[(o[i]-wp[i])*10 for i in range(0, len(index))], bottom=0, width=1, color='c', edgecolor='c')
3.买卖信号模块
- 保存为 bs.py,保存位置 …\Lib\site-packages,这样以后调用直接 import bs.py 即可
# -*- coding: utf-8 -*- class bs: # 数据初始化 def __init__(self, index, o, wp): self.index = index self.o = o self.wp = wp # 买点发生器 def buy(self): bindex = [] bo = [] bkey = [0] for i in range(1, len(self.index)): # 买点条件 if (self.o[i] > self.wp[i]) and (self.o[i-1] < self.wp[i-1]): bindex.append(self.index[i]) bo.append(self.o[i]) bkey.append(1) else: bkey.append(0) # 返回买点的位置,用于画图,bkey 则是插入回数据库 sh 用,为后续交易铺垫 return bindex, bo, bkey def sell(self): sindex = [] so = [] skey = [0] for i in range(1, len(self.index)): if (self.o[i] < self.wp[i]) and (self.o[i-1] > self.wp[i-1]): sindex.append(self.index[i]) so.append(self.o[i]) skey.append(1) else: skey.append(0) return sindex, so, skey
- 调用效果
# -*- coding: utf-8 -*- # 清屏 import os clearscreen = os.system('cls') # 调用模块 import sh # 获取 sh 数据,先模块实例化 SH = sh.sh() ''' # 下载数据到本地数据库 SH.get_url() ''' # 调取数据库表 sh 数据 index, o, h, c, l, volume = SH.get_sql() # 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 载入绘图模块 import matplotlib.pyplot as plot from matplotlib.finance import candlestick_ochl # 根据需要按列合并成一个 quotes = [] for i in range(0, len(index)): quotes.append((index[i], o[i], c[i], h[i], l[i], volume[i])) # 获取图表实例 figure = plot.figure('Made by DengChaohai') # 上图 subplot1 = figure.add_subplot(211, title='Index of Shanghai', xlabel='index of date', ylabel='index of Shanghai', xlim=[min(index), max(index)]) plot.grid(True, axis='both') # K 线图 candlestick_ochl(subplot1, quotes, colorup='r', colordown='g') # 成交量 bar 图,为了好看点,进行了缩放处理 b11 = subplot1.bar(left=index, height=[i*100/min(volume) for i in volume], bottom=0, width=1, color='c', edgecolor='c') # 下图 subplot2 = figure.add_subplot(212, title='Singal of Buy or Sell', xlabel='index of date', ylabel='index of Shanghai', xlim=[min(index), max(index)]) plot.grid(True, axis='both') # open 线图 subplot2.plot(o, 'g') # 自定义加权价 weighting price wp = [] for i in range(0, len(index)): wp.append(o[i]*2/7+c[i]*3/7+h[i]/7+l[i]/7) # weighting price 线图 subplot2.plot(wp, 'r') # 差价 bar 图,为好看同意进行了缩放 subplot2.bar(left=index, height=[(o[i]-wp[i])*10 for i in range(0, len(index))], bottom=0, width=1, color='c', edgecolor='c') # 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import bs BS = bs.bs(index, o, wp) bindex, bo, bkey = BS.buy() subplot2.plot(bindex, bo, 'ro') sindex, so, skey = BS.sell() subplot2.plot(sindex, so, 'go')
- 承上,把 buy sell 信号存回表 sh
# 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 把 bkey skey 当作列存回 sh 数据表 # 先合并新的 dataframe import pandas # 提取旧表 oldsh = pandas.read_sql('sh', SH.engine.connect()) oldsh['buy'] = pandas.Series(bkey, list(oldsh['open'].index)) oldsh['sell'] = pandas.Series(skey, list(oldsh['open'].index))
pandas.DataFrame(oldsh, bkey) pandas.DataFrame(oldsh, skey) # 存回新表 oldsh.to_sql('sh', SH.engine, if_exists='replace', index=False)
4.交易测试模块
# -*- coding: utf-8 -*- ######################################################################## class trade: """交易模块""" #---------------------------------------------------------------------- def __init__(self, money = 1000000, rate = 0.01): """初始函数""" '''本金''' self.money = money '''比例,即每次买股票的钱占本金的比例''' self.rate = rate '''每次买股票的钱''' self.moneybuy = money * rate '''持有股票,初始为 0 ''' self.stockhold = 0 '''计数,用于往前一级级跳数''' self.k = 0 '''用于绘制资金曲线''' self.amount = [0] #---------------------------------------------------------------------- def trade(self, index = [1, 2, 3, 4, 5], buy = [1, 0, 0, 1, 0], sell = [0, 1, 1, 0, 1], price = [0.1, 0.2, 0.3, 0.4, 0.5]): """交易函数""" '''遍历买点''' for i in range(self.k, len(buy) - 1): '''如果出现买点,则''' if buy[i] == 1: '''钱减少''' self.money = self.money - self.moneybuy '''股票增加''' self.stockhold = self.moneybuy / price[i] '''如果股票持有数不空,遍历卖点''' while self.stockhold: '''k + 1 因为买入后第二天才能卖''' for i in range(self.k + 1, len(sell) - 1): '''如果碰到卖点,则''' if sell[i] == 1: '''钱增加''' self.money = self.money + self.stockhold * price[i] '''股票清空''' self.stockhold = 0 '''计数加一,从第二天起重新遍历买点''' self.k = self.k + 1 '''用于绘制资金曲线''' self.amount.append(self.money) '''跳出 for 循环''' break '''返回钱数''' return self.money, self.amount
- 调用
# -*- coding: utf-8 -*- '''添加文件路径''' import sys sys.path.append('D:\360data\重要数据\桌面\sh') """调用 sh.py 模块""" import sh Sh = sh.sh() Index, Open, High, Close, Low, Volume = Sh.get_sql() """调用 bs.py 模块""" import bs Bs = bs.bs(Index, Open, Close) a, b, c = Bs.buy() d, e, f = Bs.sell() """调用 trade.py 模块""" import trade Trade = trade.trade(money=1000000, rate=0.05) Money, Amount = Trade.trade(index = Index, buy = c, sell = f, price = Open) print('total money = ', Money) '''绘制资金曲线''' import matplotlib.pyplot as plot plot.plot(Amount, 'g-')





浙公网安备 33010602011771号