上证指数

1.数据处理模块

  • 保存为 sh.py,保存位置 …\Lib\site-packages,这样以后调用直接 import sh.py 即可
# -*- coding: utf-8 -*-
# sh.py
class sh:
    # 本地数据库连接信息初始化,用 pyodbc 连接只需三个信息
    def __init__(self, user='sa', password='123456', dsn='XiTongDSN'):
        self.user = user
        self.password = password
        self.dsn = dsn
        import sqlalchemy
        # 建立数据库连接引擎,存取数据库需用到
        self.engine = sqlalchemy.create_engine('mssql+pyodbc://'+self.user+':'+self.password+'@'+self.dsn)
    # 从 tushare.org 下载上证指数 sh 数据
    def get_url(self):
        import tushare
        import pandas
        dataframe = tushare.get_hist_data('sh')
        # 由于 dataframe 存入 SQL Server 时 index 会报错,那就灵活处理下
        # 把 index 复制成列 date 插到最后一列
        index = list(dataframe['open'].index)
        dataframe['date'] = pandas.Series(index, index)
        pandas.DataFrame(dataframe, index)
        # 我只需列(开盘,最高,收盘,最低,成交量,日期),其他列统统删掉好了
        dataframe.drop(['price_change', 'p_change', 'ma5', 'ma10', 'ma20', 'v_ma5', 'v_ma10', 'v_ma20'], axis=1, inplace=True)
        # 将处理完的 dataframe 存入到本地数据库
        dataframe.to_sql('sh', self.engine, if_exists='replace', index=False)
    # 调用本地数据库上证指数数据 sh
    def get_sql(self):
        import pandas
        connection = self.engine.connect()
        data = pandas.read_sql_table('sh', connection)
        # 做处理时,由于 date 不连续且无什么意义,直接用计数当 date 用好了
        index = list(data['open'].index)
        o = data['open']
        h = data['high']
        c = data['close']
        l = data['low']
        volume = data['volume']
        return index, o, h, c, l, volume
  • 调用 sh.py
# -*- coding: utf-8 -*-
# 清屏
import os
clearscreen = os.system('cls')
# 调用 sh.py 模块
import sh
# 获取 sh 数据,先模块实例化
SH = sh.sh()
'''
# 下载数据到本地数据库
SH.get_url()
'''
# 调取数据库表 sh 数据
index, o, h, c, l, volume = SH.get_sql()

360截图20160524155237628

2.图形绘制模块

# -*- coding: utf-8 -*-
# 清屏
import os
clearscreen = os.system('cls')
# 调用模块
import sh
# 获取 sh 数据,先模块实例化
SH = sh.sh()
'''
# 下载数据到本地数据库
SH.get_url()
'''
# 调取数据库表 sh 数据
index, o, h, c, l, volume = SH.get_sql()
# 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 载入绘图模块
import matplotlib.pyplot as plot
from matplotlib.finance import candlestick_ochl
# 根据需要按列合并成一个
quotes = []
for i in range(0, len(index)):
    quotes.append((index[i],
                   o[i],
                   c[i],
                   h[i],
                   l[i],
                   volume[i]))
# 获取图表实例
figure = plot.figure('Made by DengChaohai')
# 上图
subplot1 = figure.add_subplot(211,
                           title='Index of Shanghai',
                           xlabel='index of date',
                           ylabel='index of Shanghai',
                           xlim=[min(index), max(index)])
plot.grid(True,
          axis='both')
# K 线图
candlestick_ochl(subplot1,
                 quotes,
                 colorup='r',
                 colordown='g')
# 成交量 bar 图,为了好看点,进行了缩放处理
b11 = subplot1.bar(left=index,
                height=[i*100/min(volume) for i in volume],
                bottom=0,
                width=1,
                color='c',
                edgecolor='c')

# 下图
subplot2 = figure.add_subplot(212,
                           title='Singal of Buy or Sell',
                           xlabel='index of date',
                           ylabel='index of Shanghai',
                           xlim=[min(index), max(index)])
plot.grid(True,
          axis='both')
# open 线图
subplot2.plot(o,
              'g')
# 自定义加权价 weighting price
wp = []
for i in range(0, len(index)):
    wp.append(o[i]*2/7+c[i]*3/7+h[i]/7+l[i]/7)
# weighting price 线图
subplot2.plot(wp,
              'r')
# 差价 bar 图,为好看同意进行了缩放
subplot2.bar(left=index,
             height=[(o[i]-wp[i])*10 for i in range(0, len(index))],
             bottom=0,
             width=1,
             color='c',
             edgecolor='c')

made_by_dengchaohai

3.买卖信号模块

  • 保存为 bs.py,保存位置 …\Lib\site-packages,这样以后调用直接 import bs.py 即可
# -*- coding: utf-8 -*-
class bs:
    # 数据初始化
    def __init__(self, index, o, wp):
        self.index = index
        self.o = o
        self.wp = wp
    # 买点发生器
    def buy(self):
        bindex = []
        bo = []
        bkey = [0]
        for i in range(1, len(self.index)):
            # 买点条件
            if (self.o[i] > self.wp[i]) and (self.o[i-1] < self.wp[i-1]):
                bindex.append(self.index[i])
                bo.append(self.o[i])
                bkey.append(1)
            else:
                bkey.append(0)
        # 返回买点的位置,用于画图,bkey 则是插入回数据库 sh 用,为后续交易铺垫
        return bindex, bo, bkey
    def sell(self):
        sindex = []
        so = []
        skey = [0]
        for i in range(1, len(self.index)):
            if (self.o[i] < self.wp[i]) and (self.o[i-1] > self.wp[i-1]):
                sindex.append(self.index[i])
                so.append(self.o[i])
                skey.append(1)
            else:
                skey.append(0)
        return sindex, so, skey
  • 调用效果
# -*- coding: utf-8 -*-
# 清屏
import os
clearscreen = os.system('cls')
# 调用模块
import sh
# 获取 sh 数据,先模块实例化
SH = sh.sh()
'''
# 下载数据到本地数据库
SH.get_url()
'''
# 调取数据库表 sh 数据
index, o, h, c, l, volume = SH.get_sql()
# 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 载入绘图模块
import matplotlib.pyplot as plot
from matplotlib.finance import candlestick_ochl
# 根据需要按列合并成一个
quotes = []
for i in range(0, len(index)):
    quotes.append((index[i],
                   o[i],
                   c[i],
                   h[i],
                   l[i],
                   volume[i]))
# 获取图表实例
figure = plot.figure('Made by DengChaohai')
# 上图
subplot1 = figure.add_subplot(211,
                           title='Index of Shanghai',
                           xlabel='index of date',
                           ylabel='index of Shanghai',
                           xlim=[min(index), max(index)])
plot.grid(True,
          axis='both')
# K 线图
candlestick_ochl(subplot1,
                 quotes,
                 colorup='r',
                 colordown='g')
# 成交量 bar 图,为了好看点,进行了缩放处理
b11 = subplot1.bar(left=index,
                height=[i*100/min(volume) for i in volume],
                bottom=0,
                width=1,
                color='c',
                edgecolor='c')

# 下图
subplot2 = figure.add_subplot(212,
                           title='Singal of Buy or Sell',
                           xlabel='index of date',
                           ylabel='index of Shanghai',
                           xlim=[min(index), max(index)])
plot.grid(True,
          axis='both')
# open 线图
subplot2.plot(o,
              'g')
# 自定义加权价 weighting price
wp = []
for i in range(0, len(index)):
    wp.append(o[i]*2/7+c[i]*3/7+h[i]/7+l[i]/7)
# weighting price 线图
subplot2.plot(wp,
              'r')
# 差价 bar 图,为好看同意进行了缩放
subplot2.bar(left=index,
             height=[(o[i]-wp[i])*10 for i in range(0, len(index))],
             bottom=0,
             width=1,
             color='c',
             edgecolor='c')
# 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import bs
BS = bs.bs(index, o, wp)
bindex, bo, bkey = BS.buy()
subplot2.plot(bindex,
              bo,
              'ro')
sindex, so, skey = BS.sell()
subplot2.plot(sindex,
              so,
              'go')

made_by_dengchaohai

  • 承上,把 buy sell 信号存回表 sh
# 这是暴力的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 把 bkey skey 当作列存回 sh 数据表
# 先合并新的 dataframe
import pandas
# 提取旧表
oldsh = pandas.read_sql('sh', SH.engine.connect())
oldsh['buy'] = pandas.Series(bkey, list(oldsh['open'].index))
oldsh['sell'] = pandas.Series(skey, list(oldsh['open'].index))
pandas.DataFrame(oldsh, bkey)
pandas.DataFrame(oldsh, skey)
# 存回新表
oldsh.to_sql('sh', SH.engine, if_exists='replace', index=False)

360截图20160524205902510

4.交易测试模块

# -*- coding: utf-8 -*-
########################################################################
class trade:
    """交易模块"""
    #----------------------------------------------------------------------
    def __init__(self, money = 1000000, rate = 0.01):
        """初始函数"""
        '''本金'''
        self.money = money
        '''比例,即每次买股票的钱占本金的比例'''
        self.rate = rate
        '''每次买股票的钱'''
        self.moneybuy = money * rate
        '''持有股票,初始为 0 '''
        self.stockhold = 0
        '''计数,用于往前一级级跳数'''
        self.k = 0
        '''用于绘制资金曲线'''
        self.amount = [0]
    #----------------------------------------------------------------------
    def trade(self, index = [1, 2, 3, 4, 5], buy = [1, 0, 0, 1, 0], sell = [0, 1, 1, 0, 1], price = [0.1, 0.2, 0.3, 0.4, 0.5]):
        """交易函数"""
        '''遍历买点'''
        for i in range(self.k, len(buy) - 1):
            '''如果出现买点,则'''
            if buy[i] == 1:
                '''钱减少'''
                self.money = self.money - self.moneybuy
                '''股票增加'''
                self.stockhold = self.moneybuy / price[i]
                '''如果股票持有数不空,遍历卖点'''
                while self.stockhold:
                    '''k + 1 因为买入后第二天才能卖'''
                    for i in range(self.k + 1, len(sell) - 1):
                        '''如果碰到卖点,则'''
                        if sell[i] == 1:
                            '''钱增加'''
                            self.money = self.money + self.stockhold * price[i]
                            '''股票清空'''
                            self.stockhold = 0
                            '''计数加一,从第二天起重新遍历买点'''
                            self.k = self.k + 1
                            '''用于绘制资金曲线'''
                            self.amount.append(self.money)
                            '''跳出 for 循环'''
                            break
        '''返回钱数'''
        return self.money, self.amount
  • 调用
# -*- coding: utf-8 -*-
'''添加文件路径'''
import sys
sys.path.append('D:\360data\重要数据\桌面\sh')
"""调用 sh.py 模块"""
import sh
Sh = sh.sh()
Index, Open, High,  Close, Low, Volume = Sh.get_sql()
"""调用 bs.py 模块"""
import bs
Bs = bs.bs(Index, Open, Close)
a, b, c = Bs.buy()
d, e, f = Bs.sell()
"""调用 trade.py 模块"""
import trade
Trade = trade.trade(money=1000000, rate=0.05)
Money, Amount = Trade.trade(index = Index, buy = c, sell = f, price = Open)
print('total money = ', Money)
'''绘制资金曲线'''
import matplotlib.pyplot as plot
plot.plot(Amount, 'g-')

figure_1

posted @ 2016-05-24 15:34  佩雷尔曼的信徒  阅读(271)  评论(0)    收藏  举报