biying

导航

Fibonacci性质 hdu1568

先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);
假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7;

log10(1.0234432)就是log10(10234432)的小数部分.

log10(1.0234432)=0.010063744
10^0.010063744=1.023443198
那么要取几位就很明显了吧~
先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。
注意偶先处理了0~20项是为了方便处理~

这题要利用到数列的公式:an=(1/√5) * [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....)

取完对数

log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n)其中f=(sqrt(5.0)+1.0)/2.0;
log10(1-((1-√5)/(1+√5))^n)->0
所以可以写成log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);
最后取其小数部分。

View Code
 1 #include<iostream>
 2 #include<cmath>
 3 using namespace std;
 4 int fac[21]={0,1,1};
 5 const double f=(sqrt(5.0)+1.0)/2.0;
 6 int main()
 7 {
 8     double bit;
 9     int n,i;
10     for(i=3;i<=20;i++)fac[i]=fac[i-1]+fac[i-2];//求前20项
11     while(cin>>n)
12     {
13         if(n<=20)
14         {
15             cout<<fac[n]<<endl;
16             continue;
17         }
18         bit=-0.5*log(5.0)/log(10.0)+((double)n)*log(f)/log(10.0);//忽略最后一项无穷小
19         bit=bit-floor(bit);
20         bit=pow(10.0,bit);
21         while(bit<1000)bit=bit*10.0;
22         printf("%d\n",(int)bit);
23     }
24     return 0;
25 }

 

 

posted on 2013-04-13 18:39  biying  阅读(214)  评论(0)    收藏  举报