2.tf.keras实现线性回归
1.使用Income数据集
,Education,Income 1,10.000000 ,26.658839 2,10.401338 ,27.306435 3,10.842809 ,22.132410 4,11.244147 ,21.169841 5,11.645449 ,15.192634 6,12.086957 ,26.398951 7,12.048829 ,17.435307 8,12.889632 ,25.507885 9,13.290970 ,36.884595 10,13.732441 ,39.666109 11,14.133779 ,34.396281 12,14.635117 ,41.497994 13,14.978589 ,44.981575 14,15.377926 ,47.039595 15,15.779264 ,48.252578 16,16.220736 ,57.034251 17,16.622074 ,51.490919 18,17.023411 ,51.336621 19,17.464883 ,57.681998 20,17.866221 ,68.553714 21,18.267559 ,64.310925 22,18.709030 ,68.959009 23,19.110368 ,74.614639 24,19.511706 ,71.867195 25,19.913043 ,76.098135 26,20.354515 ,75.775216 27,20.755853 ,72.486055 28,21.167191 ,77.355021 29,21.598662 ,72.118790 30,22.000000 ,80.260571
2.python代码
#!/usr/bin/env python
# coding: utf-8
import tensorflow as tf
print("Tensorflow version:{}".format(tf.__version__))
import pandas as pd
data = pd.read_csv("./dataset/Income1.csv")
import matplotlib.pyplot as plt
plt.scatter(data.Education,data.Income)
x = data.Education
y = data.Income
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
model.summary()
model.compile(optimizer="adam", ##优化方法使用内置的adam
loss="mse" ##损失函数使用均方差
)
history = model.fit(x,y,epochs=5000) ##对构建的模型进行训练; 训练5000次
model.predict(x)
model.predict(pd.Series(20)) ##输入值应该为Series类型
posted on 2020-01-03 23:11 bingyangzhang 阅读(671) 评论(0) 收藏 举报
浙公网安备 33010602011771号