C++ in Chromium 101 - Codelab 编程开始 bind 多线程 回调

 


 

实现回调三步走:

a. 声明一个函数变量,有两种once和repeat:

base::OnceCallback<int(std::string, double)>  func1;
base::RepeatingCallback<int(std::string, double)> func2;

b. 给变量初始化:base::BindOnce() or base::BindRepeating()

void MyFunction(int32 a, double b);

base::OnceCallback<void(double)> my_callback1 = base::BindOnce(&MyFunction, 10);
base::RepeatingCallback<void(double)> my_callback2 = base::BindRepeating(&MyFunction, 10);

c. 执行回调函数变量

对于once类型的,需要通过c++ move语义,只执行一次后变量会被清空。repeat没有限制。

std::move(my_callback1).Run(3.5);
my_callback2.Run(3.5);

1,这个函数接收 函数变量。并执行这个回调函数。

void MyFunction1(base::OnceCallback<int(int32, double)> my_callback) {
  // OnceCallback
  int result1 = std::move(my_callback).Run(10, 1.0);

  // After running a OnceCallback, it's consumed and nulled out.
  DCHECK(!my_callback)
  ...
}

2,这是个回调函数 实现部分:

void MyFunction(int32 a, double b){

xxxx
}

MyFunction回调函数通过bind创建了回调函数,赋值给了my_callback1这个回调函数变量。并绑定了第一个参数为10。

base::OnceCallback<void(double)> my_callback1 = base::BindOnce(&MyFunction, 10); //这个10相当于第一个参数是10,第二个参数run时再指定:如std::move(my_callback1).Run(3.5);

3, 将回调函数my_callback1传给了MyFunction1。 MyFunction1拥有了回调函数。什么时候回调函数执行取决于合适调用 my_callback1 的Run方法。这里是传递后就被调用。也可以等时机去调用。

MyFunction1(my_callback1)

ok

更多可以参考:

Chromium多线程通信的Closure机制分析:罗升阳的bind介绍

https://blog.csdn.net/luoshengyang/article/details/46747797

 


 

chromium log 调用时不配置的话,默认会输出到可执行文件相同目录下的 debug.log 中。

LOG(INFO) << "Going to sleep for " << duration_seconds << " seconds...";

 


 

在实验101时,会导致chrome代码重新编译。小心

如果自己新添加目录在src下,比如 mytest

需要在src目录的build.gn里面

group("gn_all") {
testonly = true

deps = [

添加上 "//mytest:mygroup",

并且在mytest目录下的BUILD.gn里面写上:

group("mygroup") {
  testonly = true
  deps = [
    ":myexe",
  ]
}

executable("myexe") {
  sources = [ "//mytest/cpp101/hello_world.cc" ]
  deps = [ "//base" ]
}

就可以生成gn和编译( --ide=vs 生成visual studio sln文件;--args生成args.gn在out\cpp101下,与直接写这个文件效果一样)

gn gen out\cpp101 --args="is_component_build=true is_debug=true enable_nacl=false target_cpu=\"x86\" v8_symbol_level=0 "
autoninja -C out\cpp101 myexe
或者 autoninja -C out\cpp101 mygroup 会编译生成多个,如果里面有的话。
cd /d Z:\chromium\src\out\cpp101
hello_chromium.exe

 这个随源码发放:/src/codelabs/cpp101/

在线可看:https://chromium.googlesource.com/chromium/src/+/HEAD/codelabs/cpp101/codelab.md

C++ in Chromium 101 - Codelab

This tutorial will guide you through the creation of various example C++ applications, highlighting important Chromium C++ concepts. This tutorial assumes robust knowledge of C++ (the language) but does not assume you know how to write an application specific to Chromium‘s style and architecture. This tutorial does assume that you know how to check files out of Chromium’s repository.

As always, consider the following resources as of primary importance:

This tutorial does not assume you have read any of the above, though you should feel free to peruse them when necessary. This tutorial will cover information across all of those guides.

Exercise solutions are available in the codelabs/cpp101/ directory of the Chromium source code. Build all of the example solutions with autoninja -C out/Default codelabs. You are encouraged to create a new base/cpp101/ directory locally if you want to try implementing these exercises yourself.

Exercise 0: “Hello World!”

This exercise demonstrates the use of the ninja build system to build a simple C++ binary and demonstrates how typical C++ builds are organized within Chromium.

Create a new target in base/BUILD.gn for a new executable named codelab_hello_world. Then write the classic “Hello, world!” program in C++. You should be able to build it with autoninja -C out/Default codelab_hello_world and execute it directly by finding the binary within out/Default.

Sample execution:

$ cd /path/to/chromium/src
$ gclient runhooks
$ autoninja -C out/Default codelab_hello_world
$ out/Default/codelab_hello_world
Hello, world!
[0923/185218.645640:INFO:hello_world.cc(27)] Hello, world!

More information

Targets

Git Tips and Git Cookbook

Life of a Chromium Developer

Part 1: Using command-line arguments

We will augment our codelab_hello_world binary to parse command-line flags and use those values to print messages to the user.

Command-line arguments within Chromium are processed by the CommandLine::Init() function, which takes command line flags from the argc and argv (argument count & vector) variables of the main() method. A typical invocation of CommandLine::Init() looks like the following:

int main(int argc, char** argv) {
  CommandLine::Init(argc, argv);
  // Main program execution ...
  return 0;
}

Flags are not explicitly defined in Chromium. Instead, we use GetSwitchValueASCII() and friends to retrieve values passed in.

Important include files

#include "base/command_line.h"
#include "base/logging.h"

Exercise 1: Using command-line arguments

Change codelab_hello_world to take a --greeting and a --name switch. The greeting, if not specified, should default to “Hello”, and the name, if not specified, should default to “World”.

Part 2: Callbacks and Bind

C++, unlike other languages such as Python, Javascript, or Lisp, has only rudimentary support for callbacks and no support for partial application. However, Chromium has the base::OnceCallback<Sig> and  base::RepeatingCallback<Sig>class, whose instances can be freely passed around, returned, and generally be treated as first-class values. base::OnceCallback is the move-only, single-call variant, and base::RepeatingCallback is the copyable, multiple-call variant.

The Sig template parameter is a function signature type:

// The type of a callback that:
//  - Can run only once.
//  - Is move-only and non-copyable.
//  - Takes no arguments and does not return anything.
// base::OnceClosure is an alias of this type.
base::OnceCallback<void()>

// The type of a callback that:
//  - Can run more than once.
//  - Is copyable.
//  - Takes no arguments and does not return anything.
// base::RepeatingClosure is an alias of this type.
base::RepeatingCallback<void()>

// The types of a callback that takes two arguments (a string and a double)
// and returns an int.
base::OnceCallback<int(std::string, double)>
base::RepeatingCallback<int(std::string, double)>

Callbacks are executed by invoking the Run() member function. base::OnceCallback needs to be rvalue to run.

void MyFunction1(base::OnceCallback<int(std::string, double)> my_callback) {
  // OnceCallback
  int result1 = std::move(my_callback).Run("my string 1", 1.0);

  // After running a OnceCallback, it's consumed and nulled out.
  DCHECK(!my_callback);
  ...
}

void MyFunction2(base::RepeatingCallback<int(std::string, double)> my_callback) {
  int result1 = my_callback.Run("my string 1", 1.0);
  // Run() can be called as many times as you wish for RepeatingCallback.
  int result2 = my_callback.Run("my string 2", 2);
  ...

Callbacks are constructed using the base::BindOnce() or base::BindRepeating() function, which handles partial application:

// Declare a function.
void MyFunction(int32 a, double b);

base::OnceCallback<void(double)> my_callback1 = base::BindOnce(&MyFunction, 10);
base::RepeatingCallback<void(double)> my_callback2 = base::BindRepeating(&MyFunction, 10);

// Equivalent to:
//
// MyFunction(10, 3.5);
//
std::move(my_callback1).Run(3.5);
my_callback2.Run(3.5);

base::BindOnce() and base::BindRepeating() can do a lot more, including binding class member functions and binding additional arguments to an existing base::OnceCallback or base::RepeatingCallback. See docs/callback.md for details.

Important Include Files

#include "base/bind.h"
#include "base/callback.h"

More Information

Callback<> and Bind()

Exercise 2: Fibonacci closures

Implement a function that returns a callback that takes no arguments and returns successive Fibonacci numbers. That is, a function that can be used like this:

base::RepeatingCallback<int()> fibonacci_closure = MakeFibonacciClosure();
LOG(INFO) << fibonacci_closure.Run(); // Prints "1"
LOG(INFO) << fibonacci_closure.Run(); // Prints "1"
LOG(INFO) << fibonacci_closure.Run(); // Prints "2"
...

Each returned Fibonacci callback should be independent; running one callback shouldn't affect the result of running another callback. Write a fibonacci executable that takes an integer argument n and uses your function to print out the first n Fibonacci numbers.

(This exercise was inspired by this Go exercise: Function closures.)

Part 3: Threads and task runners

Chromium has a number of abstractions for sequencing and threading. Threading and Tasks in Chrome is a must-read and go-to reference for anything related to tasks, thread pools, task runners, and more.

Sequenced execution (on virtual threads) is strongly preferred to single-threaded execution (on physical threads). Chromium's abstraction for asynchronously running posted tasks is base::TaskRunner. Task runners allow you to write code that posts tasks without depending on what exactly will run those tasks.

base::SequencedTaskRunner (which extends base::TaskRunner) is a commonly used abstraction which handles running tasks (which are instances of base::OnceClosure) in sequential order. These tasks are not guaranteed to run on the same thread. The preferred way of posting to the current (virtual) thread is base::SequencedTaskRunnerHandle::Get().

A task that can run on any thread and doesn’t have ordering or mutual exclusion requirements with other tasks should be posted using one of the base::ThreadPool::PostTask() functions.

There are a number of ways to post tasks to a thread pool or task runner.

  • PostTask()
  • PostDelayedTask() if you want to add a delay.
  • PostTaskAndReply() lets you post a task which will post a task back to your current thread when its done.
  • PostTaskAndReplyWithResult() to automatically pass the return value of the first call as argument to the second call.

Normally you wouldn‘t have to worry about setting up a threading environment and keeping it running, since that is automatically done by Chromium’s thread classes. However, since the main thread doesn‘t automatically start off with TaskEnvironment, there’s a bit of extra setup involved. The following setup code should be enough to create the necessary TaskEnvironment. Include testonly=true flag in the BUILD.gn file, along with "//base/test:test_support" set as a dependency.

Important header files

#include "base/test/task_environment.h"
#include "base/test/test_timeouts.h"
#include "base/at_exit.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/time/time.h"
#include "base/command_line.h"

Setup code:

int main(int argc, char* argv[]) {
  base::AtExitManager exit_manager;
  base::CommandLine::Init(argc, argv);
  TestTimeouts::Initialize();
  base::test::TaskEnvironment task_environment{
      base::test::TaskEnvironment::TimeSource::SYSTEM_TIME};

  // The rest of your code will go here.

Exercise 3a: Sleep

Implement the Unix command-line utility sleep using only a base::SequencedTaskRunnerHandle (i.e., without using the sleep function or base::PlatformThread::Sleep). Hint: You will need to use base::RunLoop to prevent the main function from exiting prematurely.

Exercise 3b: Integer factorization

Take the given (slow) function to find a non-trivial factor of a given integer:

absl::optional<int> FindNonTrivialFactor(int n) {
  // Really naive algorithm.
  for (int i = 2; i < n; ++i) {
    if (n % i == 0) {
      return i;
    }
  }
  return absl::nullopt;
}

Write a command-line utility factor that takes a number, posts a task to the background using FindNonTrivialFactor, and prints a status update every second as long as the factoring task is executing.

More information

Threading and Tasks in Chrome

Part 4: Mojo

Mojo is Chromium's abstraction of IPC. Mojo allows for developers to easily connect interface clients and implementations across arbitrary intra- and inter-process boundaries. See the Intro to Mojo and Services guide to get started.

Exercise 4: Building a simple out-of-process service

See the building a simple out-of-process service tutorial on using Mojo to define, hook up, and launch an out-of-process service.

代码位于chromium\src\codelabs\cpp101\

mojo.cc 是客户端调用程序

  math_service->Divide(divisor, dividend,
                       base::BindOnce(
                           [](base::OnceClosure quit, int32_t quotient) {
                             LOG(INFO) << "Quotient: " << quotient;
                             std::move(quit).Run();
                           },
                           run_loop.QuitClosure()));

这个Divide 接口原型是

  void Divide(int32_t dividend,
              int32_t divisor,
              DivideCallback callback) override;

我们看到第三个参数赋值为:

                       base::BindOnce(
                           [](base::OnceClosure quit, int32_t quotient) {
                             LOG(INFO) << "Quotient: " << quotient;
                             std::move(quit).Run();
                           },
                           run_loop.QuitClosure())

base::BindOnce 将创建一个 函数指针变量。 这个函数指针指向一个 lamba 函数实现(红色部分),并且第一个参数绑定成:run_loop.QuitClosure()。

服务端实现:

void MathService::Divide(int32_t dividend,
                         int32_t divisor,
                         DivideCallback callback) {
  // Respond with the quotient!
  std::move(callback).Run(dividend / divisor);
}

接收到
base::BindOnce 创建的 回调函数。
调用 Run 执行它。执行时会调用上面的 lamba函数,第一个参数传入 run_loop.QuitClosure(),第二个参数是 dividend / divisor。

 

More Information

Mojo C++ Bindings API Docs 里面放有大多数文档

 Mojo Docs

 

Mojo & Services


 

 

Callback<> and Bind()

[TOC]

Introduction

The templated base::Callback<> class is a generalized function object. Together with the base::Bind() function in base/bind.h, they provide a type-safe method for performing partial application of functions.

Partial application is the process of binding a subset of a function's arguments to produce another function that takes fewer arguments. This can be used to pass around a unit of delayed execution, much like lexical closures are used in other languages. For example, it is used in Chromium code to schedule tasks on different MessageLoops.

A callback with no unbound input parameters (base::Callback<void()>) is called a base::Closure. Note that this is NOT the same as what other languages refer to as a closure -- it does not retain a reference to its enclosing environment.

OnceCallback<> And RepeatingCallback<>

base::OnceCallback<> and base::RepeatingCallback<> are next gen callback classes, which are under development.

base::OnceCallback<> is created by base::BindOnce(). This is a callback variant that is a move-only type and can be run only once. This moves out bound parameters from its internal storage to the bound function by default, so it's easier to use with movable types. This should be the preferred callback type: since the lifetime of the callback is clear, it's simpler to reason about when a callback that is passed between threads is destroyed.

base::RepeatingCallback<> is created by base::BindRepeating(). This is a callback variant that is copyable that can be run multiple times. It uses internal ref-counting to make copies cheap. However, since ownership is shared, it is harder to reason about when the callback and the bound state are destroyed, especially when the callback is passed between threads.

The legacy base::Callback<> is currently aliased to base::RepeatingCallback<>. In new code, prefer base::OnceCallback<> where possible, and use base::RepeatingCallback<> otherwise. Once the migration is complete, the type alias will be removed and base::OnceCallback<> will be renamed to base::Callback<> to emphasize that it should be preferred.

base::RepeatingCallback<> is convertible to base::OnceCallback<> by the implicit conversion.

Memory Management And Passing

Pass base::{Once,Repeating}Callback objects by value if ownership is transferred; otherwise, pass it by const-reference.

// |Foo| just refers to |cb| but doesn't store it nor consume it.
bool Foo(const base::OnceCallback<void(int)>& cb) {
  return cb.is_null();
}

// |Bar| takes the ownership of |cb| and stores |cb| into |g_cb|.
base::RepeatingCallback<void(int)> g_cb;
void Bar(base::RepeatingCallback<void(int)> cb) {
  g_cb = std::move(cb);
}

// |Baz| takes the ownership of |cb| and consumes |cb| by Run().
void Baz(base::OnceCallback<void(int)> cb) {
  std::move(cb).Run(42);
}

// |Qux| takes the ownership of |cb| and transfers ownership to PostTask(),
// which also takes the ownership of |cb|.
void Qux(base::RepeatingCallback<void(int)> cb) {
  PostTask(FROM_HERE, base::BindOnce(cb, 42));
  PostTask(FROM_HERE, base::BindOnce(std::move(cb), 43));
}

When you pass a base::{Once,Repeating}Callback object to a function parameter, use std::move() if you don't need to keep a reference to it, otherwise, pass the object directly. You may see a compile error when the function requires the exclusive ownership, and you didn't pass the callback by move. Note that the moved-from base::{Once,Repeating}Callback becomes null, as if its Reset() method had been called. Afterward, its is_null() method will return true and its operator bool() will return false.

Quick reference for basic stuff

Binding A Bare Function

int Return5() { return 5; }
base::OnceCallback<int()> func_cb = base::BindOnce(&Return5);
LOG(INFO) << std::move(func_cb).Run();  // Prints 5.
int Return5() { return 5; }
base::RepeatingCallback<int()> func_cb = base::BindRepeating(&Return5);
LOG(INFO) << func_cb.Run();  // Prints 5.

Binding A Captureless Lambda

base::Callback<int()> lambda_cb = base::Bind([] { return 4; });
LOG(INFO) << lambda_cb.Run();  // Print 4.

base::OnceCallback<int()> lambda_cb2 = base::BindOnce([] { return 3; });
LOG(INFO) << std::move(lambda_cb2).Run();  // Print 3.

Binding A Capturing Lambda (In Tests)

When writing tests, it is often useful to capture arguments that need to be modified in a callback.

#include "base/test/bind_test_util.h"

int i = 2;
base::Callback<void()> lambda_cb = base::BindLambdaForTesting([&]() { i++; });
lambda_cb.Run();
LOG(INFO) << i;  // Print 3;

Binding A Class Method

The first argument to bind is the member function to call, the second is the object on which to call it.

class Ref : public base::RefCountedThreadSafe<Ref> {
 public:
  int Foo() { return 3; }
};
scoped_refptr<Ref> ref = new Ref();
base::Callback<void()> ref_cb = base::Bind(&Ref::Foo, ref);
LOG(INFO) << ref_cb.Run();  // Prints out 3.

By default the object must support RefCounted or you will get a compiler error. If you're passing between threads, be sure it's RefCountedThreadSafe! See "Advanced binding of member functions" below if you don't want to use reference counting.

Running A Callback

Callbacks can be run with their Run method, which has the same signature as the template argument to the callback. Note that base::OnceCallback::Run consumes the callback object and can only be invoked on a callback rvalue.

void DoSomething(const base::Callback<void(int, std::string)>& callback) {
  callback.Run(5, "hello");
}

void DoSomethingOther(base::OnceCallback<void(int, std::string)> callback) {
  std::move(callback).Run(5, "hello");
}

RepeatingCallbacks can be run more than once (they don't get deleted or marked when run). However, this precludes using base::Passed (see below).

void DoSomething(const base::RepeatingCallback<double(double)>& callback) {
  double myresult = callback.Run(3.14159);
  myresult += callback.Run(2.71828);
}

If running a callback could result in its own destruction (e.g., if the callback recipient deletes the object the callback is a member of), the callback should be moved before it can be safely invoked. (Note that this is only an issue for RepeatingCallbacks, because a OnceCallback always has to be moved for execution.)

void Foo::RunCallback() {
  std::move(&foo_deleter_callback_).Run();
}

Creating a Callback That Does Nothing

Sometimes you need a callback that does nothing when run (e.g. test code that doesn't care to be notified about certain types of events). It may be tempting to pass a default-constructed callback of the right type:

using MyCallback = base::OnceCallback<void(bool arg)>;
void MyFunction(MyCallback callback) {
  std::move(callback).Run(true);  // Uh oh...
}
...
MyFunction(MyCallback());  // ...this will crash when Run()!

Default-constructed callbacks are null, and thus cannot be Run(). Instead, use base::DoNothing():

...
MyFunction(base::DoNothing());  // Can be Run(), will no-op

base::DoNothing() can be passed for any OnceCallback or RepeatingCallback that returns void.

Implementation-wise, base::DoNothing() is actually a functor which produces a callback from operator(). This makes it unusable when trying to bind other arguments to it. Normally, the only reason to bind arguments to DoNothing() is to manage object lifetimes, and in these cases, you should strive to use idioms like DeleteSoon(), ReleaseSoon(), or RefCountedDeleteOnSequence instead. If you truly need to bind an argument to DoNothing(), or if you need to explicitly create a callback object (because implicit conversion through operator()() won't compile), you can instantiate directly:

// Binds |foo_ptr| to a no-op OnceCallback takes a scoped_refptr<Foo>.
// ANTIPATTERN WARNING: This should likely be changed to ReleaseSoon()!
base::Bind(base::DoNothing::Once<scoped_refptr<Foo>>(), foo_ptr);

Passing Unbound Input Parameters

Unbound parameters are specified at the time a callback is Run(). They are specified in the base::Callback template type:

void MyFunc(int i, const std::string& str) {}
base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc);
cb.Run(23, "hello, world");

Passing Bound Input Parameters

Bound parameters are specified when you create the callback as arguments to base::Bind(). They will be passed to the function and the Run()ner of the callback doesn't see those values or even know that the function it's calling.

void MyFunc(int i, const std::string& str) {}
base::Callback<void()> cb = base::Bind(&MyFunc, 23, "hello world");
cb.Run();

A callback with no unbound input parameters (base::Callback<void()>) is called a base::Closure. So we could have also written:

base::Closure cb = base::Bind(&MyFunc, 23, "hello world");

When calling member functions, bound parameters just go after the object pointer.

base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world");

Partial Binding Of Parameters

You can specify some parameters when you create the callback, and specify the rest when you execute the callback.

When calling a function bound parameters are first, followed by unbound parameters.

void ReadIntFromFile(const std::string& filename,
                     base::OnceCallback<void(int)> on_read);

void DisplayIntWithPrefix(const std::string& prefix, int result) {
  LOG(INFO) << prefix << result;
}

void AnotherFunc(const std::string& file) {
  ReadIntFromFile(file, base::BindOnce(&DisplayIntWithPrefix, "MyPrefix: "));
};

This technique is known as partial application. It should be used in lieu of creating an adapter class that holds the bound arguments. Notice also that the "MyPrefix: " argument is actually a const char*, while DisplayIntWithPrefix actually wants a const std::string&. Like normal function dispatch, base::Bind, will coerce parameter types if possible.

Avoiding Copies With Callback Parameters

A parameter of base::BindRepeating() or base::BindOnce() is moved into its internal storage if it is passed as a rvalue.

std::vector<int> v = {1, 2, 3};
// |v| is moved into the internal storage without copy.
base::Bind(&Foo, std::move(v));
// The vector is moved into the internal storage without copy.
base::Bind(&Foo, std::vector<int>({1, 2, 3}));

Arguments bound with base::BindOnce() are always moved, if possible, to the target function. A function parameter that is passed by value and has a move constructor will be moved instead of copied. This makes it easy to use move-only types with base::BindOnce().

In contrast, arguments bound with base::BindRepeating() are only moved to the target function if the argument is bound with base::Passed().

DANGER: A base::RepeatingCallback can only be run once if arguments were bound with base::Passed(). For this reason, avoid base::Passed(). If you know a callback will only be called once, prefer to refactor code to work with base::OnceCallback instead.

Avoid using base::Passed() with base::BindOnce(), as std::move() does the same thing and is more familiar.

void Foo(std::unique_ptr<int>) {}
auto p = std::make_unique<int>(42);

// |p| is moved into the internal storage of Bind(), and moved out to |Foo|.
base::BindOnce(&Foo, std::move(p));
base::BindRepeating(&Foo, base::Passed(&p)); // Ok, but subtle.
base::BindRepeating(&Foo, base::Passed(std::move(p))); // Ok, but subtle.

Quick reference for advanced binding

Binding A Class Method With Weak Pointers

If MyClass has a base::WeakPtr<MyClass> weak_this_ member (see below) then a class method can be bound with:

base::Bind(&MyClass::Foo, weak_this_);

The callback will not be run if the object has already been destroyed.

Note that class method callbacks bound to base::WeakPtrs may only be run on the same sequence on which the object will be destroyed, since otherwise execution of the callback might race with the object's deletion.

To use base::WeakPtr with base::Bind()MyClass will typically look like:

class MyClass {
public:
  MyClass() {
    weak_this_ = weak_factory_.GetWeakPtr();
  }
private:
  base::WeakPtr<MyClass> weak_this_;
  // MyClass member variables go here.
  base::WeakPtrFactory<MyClass> weak_factory_{this};
};

weak_factory_ is the last member variable in MyClass so that it is destroyed first. This ensures that if any class methods bound to weak_this_ are Run() during teardown, then they will not actually be executed.

If MyClass only ever base::Bind()s and executes callbacks on the same sequence, then it is generally safe to call weak_factory_.GetWeakPtr() at the base::Bind() call, rather than taking a separate weak_this_ during construction.

Binding A Class Method With Manual Lifetime Management

base::Bind(&MyClass::Foo, base::Unretained(this));

This disables all lifetime management on the object. You're responsible for making sure the object is alive at the time of the call. You break it, you own it!

Binding A Class Method And Having The Callback Own The Class

MyClass* myclass = new MyClass;
base::Bind(&MyClass::Foo, base::Owned(myclass));

The object will be deleted when the callback is destroyed, even if it's not run (like if you post a task during shutdown). Potentially useful for "fire and forget" cases.

Smart pointers (e.g. std::unique_ptr<>) are also supported as the receiver.

std::unique_ptr<MyClass> myclass(new MyClass);
base::Bind(&MyClass::Foo, std::move(myclass));

Ignoring Return Values

Sometimes you want to call a function that returns a value in a callback that doesn't expect a return value.

int DoSomething(int arg) { cout << arg << endl; }
base::Callback<void(int)> cb =
    base::Bind(IgnoreResult(&DoSomething));

Quick reference for binding parameters to Bind()

Bound parameters are specified as arguments to base::Bind() and are passed to the function. A callback with no parameters or no unbound parameters is called a base::Closure (base::Callback<void()> and base::Closure are the same thing).

Passing Parameters Owned By The Callback

void Foo(int* arg) { cout << *arg << endl; }
int* pn = new int(1);
base::Closure foo_callback = base::Bind(&foo, base::Owned(pn));

The parameter will be deleted when the callback is destroyed, even if it's not run (like if you post a task during shutdown).

Passing Parameters As A unique_ptr

void TakesOwnership(std::unique_ptr<Foo> arg) {}
auto f = std::make_unique<Foo>();
// f becomes null during the following call.
base::OnceClosure cb = base::BindOnce(&TakesOwnership, std::move(f));

Ownership of the parameter will be with the callback until the callback is run, and then ownership is passed to the callback function. This means the callback can only be run once. If the callback is never run, it will delete the object when it's destroyed.

Passing Parameters As A scoped_refptr

void TakesOneRef(scoped_refptr<Foo> arg) {}
scoped_refptr<Foo> f(new Foo);
base::Closure cb = base::Bind(&TakesOneRef, f);

This should "just work." The closure will take a reference as long as it is alive, and another reference will be taken for the called function.

void DontTakeRef(Foo* arg) {}
scoped_refptr<Foo> f(new Foo);
base::Closure cb = base::Bind(&DontTakeRef, base::RetainedRef(f));

base::RetainedRef holds a reference to the object and passes a raw pointer to the object when the Callback is run.

Passing Parameters By Reference

References are copied unless std::ref or std::cref is used. Example:

void foo(const int& arg) { printf("%d %p\n", arg, &arg); }
int n = 1;
base::Closure has_copy = base::Bind(&foo, n);
base::Closure has_ref = base::Bind(&foo, std::cref(n));
n = 2;
foo(n);                        // Prints "2 0xaaaaaaaaaaaa"
has_copy.Run();                // Prints "1 0xbbbbbbbbbbbb"
has_ref.Run();                 // Prints "2 0xaaaaaaaaaaaa"

Normally parameters are copied in the closure. DANGER: std::ref and std::cref store a (const) reference instead, referencing the original parameter. This means that you must ensure the object outlives the callback!

Implementation notes

Where Is This Design From:

The design of base::Callback and base::Bind is heavily influenced by C++'s tr1::function / tr1::bind, and by the "Google Callback" system used inside Google.

Customizing the behavior

There are several injection points that controls binding behavior from outside of its implementation.

namespace base {

template <typename Receiver>
struct IsWeakReceiver {
  static constexpr bool value = false;
};

template <typename Obj>
struct UnwrapTraits {
  template <typename T>
  T&& Unwrap(T&& obj) {
    return std::forward<T>(obj);
  }
};

}  // namespace base

If base::IsWeakReceiver<Receiver>::value is true on a receiver of a method, base::Bind checks if the receiver is evaluated to true and cancels the invocation if it's evaluated to false. You can specialize base::IsWeakReceiver to make an external smart pointer as a weak pointer.

base::UnwrapTraits<BoundObject>::Unwrap() is called for each bound arguments right before base::Callback calls the target function. You can specialize this to define an argument wrapper such as base::Unretainedbase::Ownedbase::RetainedRef and base::Passed.

How The Implementation Works:

There are three main components to the system:

  1. The base::Callback<> classes.
  2. The base::Bind() functions.
  3. The arguments wrappers (e.g., base::Unretained() and base::Owned()).

The Callback classes represent a generic function pointer. Internally, it stores a refcounted piece of state that represents the target function and all its bound parameters. The base::Callback constructor takes a base::BindStateBase*, which is upcasted from a base::BindState<>. In the context of the constructor, the static type of this base::BindState<> pointer uniquely identifies the function it is representing, all its bound parameters, and a Run() method that is capable of invoking the target.

base::Bind() creates the base::BindState<> that has the full static type, and erases the target function type as well as the types of the bound parameters. It does this by storing a pointer to the specific Run() function, and upcasting the state of base::BindState<>* to a base::BindStateBase*. This is safe as long as this BindStateBase pointer is only used with the stored Run() pointer.

To base::BindState<> objects are created inside the base::Bind() functions. These functions, along with a set of internal templates, are responsible for

  • Unwrapping the function signature into return type, and parameters
  • Determining the number of parameters that are bound
  • Creating the BindState storing the bound parameters
  • Performing compile-time asserts to avoid error-prone behavior
  • Returning a Callback<> with an arity matching the number of unbound parameters and that knows the correct refcounting semantics for the target object if we are binding a method.

The base::Bind functions do the above using type-inference and variadic templates.

By default base::Bind() will store copies of all bound parameters, and attempt to refcount a target object if the function being bound is a class method. These copies are created even if the function takes parameters as const references. (Binding to non-const references is forbidden, see bind.h.)

To change this behavior, we introduce a set of argument wrappers (e.g., base::Unretained()). These are simple container templates that are passed by value, and wrap a pointer to argument. See the file-level comment in base/bind_helpers.h for more info.

These types are passed to the Unwrap() functions to modify the behavior of base::Bind(). The Unwrap() functions change behavior by doing partial specialization based on whether or not a parameter is a wrapper type.

base::Unretained() is specific to Chromium.

Missing Functionality

  • Binding arrays to functions that take a non-const pointer. Example:
void Foo(const char* ptr);
void Bar(char* ptr);
base::Bind(&Foo, "test");
base::Bind(&Bar, "test");  // This fails because ptr is not const.
  • In case of partial binding of parameters a possibility of having unbound parameters before bound parameters. Example:
void Foo(int x, bool y);
base::Bind(&Foo, _1, false); // _1 is a placeholder.

If you are thinking of forward declaring base::Callback in your own header file, please include "base/callback_forward.h" instead.

 


 

Partial application

From Wikipedia, the free encyclopedia
Jump to navigationJump to search

In computer sciencepartial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function {\displaystyle f\colon (X\times Y\times Z)\to N}{\displaystyle f\colon (X\times Y\times Z)\to N}, we might fix (or 'bind') the first argument, producing a function of type {\displaystyle {\text{partial}}(f)\colon (Y\times Z)\to N}{\displaystyle {\text{partial}}(f)\colon (Y\times Z)\to N}. Evaluation of this function might be represented as {\displaystyle f_{partial}(2,3)}f_{partial}(2,3). Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.

Motivation[edit]

Intuitively, partial function application says "if you fix the first arguments of the function, you get a function of the remaining arguments". For example, if function div(x,y) = x/y, then div with the parameter x fixed at 1 is another function: div1(y) = div(1,y) = 1/y. This is the same as the function inv that returns the multiplicative inverse of its argument, defined by inv(y) = 1/y.

The practical motivation for partial application is that very often the functions obtained by supplying some but not all of the arguments to a function are useful; for example, many languages have a function or operator similar to plus_one. Partial application makes it easy to define these functions, for example by creating a function that represents the addition operator with 1 bound as its first argument.

Implementations[edit]

In languages such as MLHaskell and F#, functions are defined in curried form by default. Supplying fewer than the total number of arguments is referred to as partial application.

In languages with first-class functions one can define curryuncurry and papply to perform currying and partial application explicitly. This might incur a greater run-time overhead due to the creation of additional closures, while Haskell can use more efficient techniques.[1]

Scala implements optional partial application with placeholder, e.g. def add(xIntyInt{x+y}; add(1_: Int) returns an incrementing function. Scala also support multiple parameter lists as currying, e.g. def add(xInt)(yInt{x+y}; add(1_.

Clojure implements partial application using the partial function defined in its core library.

The C++ standard library provides bind(function, args..) to return a function object that is the result of partial application of the given arguments to the given function. Alternatively, lambdas can be used.

int f(int a, int b);
auto f_partial = [](int a) { return f(a, 123); };
assert(f_partial(456) == f(456, 123) );

In JavaMethodHandle.bindTo partially applies a function to its first argument.[2]

In Raku, the assuming method creates a new function with fewer parameters.[3]

The Python standard library module functools includes the partial function, allowing positional and named argument bindings, returning a new function.[4]

In XQuery, an argument placeholder (?) is used for each non-fixed argument in a partial function application.[5]

Definitions[edit]

In the simply-typed lambda calculus with function and product types (λ→,×) partial application, currying and uncurrying can be defined as:

papply
(((a × b) → c) × a) → (b → c) = λ(fx). λyf (xy)
curry
((a × b) → c) → (a → (b → c)) = λfλxλyf (xy)
uncurry
(a → (b → c)) → ((a × b) → c) = λfλ(xy). f x y

Note that curry papply = curry.

posted @ 2020-07-06 11:28  Bigben  阅读(2390)  评论(0编辑  收藏  举报