Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
给定一个长度为n的数组A,假设Bk是A在第k个位置顺时针旋转后得到的数组,定义旋转函数F(k)=0*Bk[0]+1*Bk[1]+…+(n-1)*Bk[n-1],计算F(0)、F(1)、…、F(n-1)的最大值。
分析:
直接将各个F都计算出来,遍历F,找出最大即可。
代码如下:
int maxRotateFunction(vector<int>& A)
{
if (A.empty())
return 0;
int length = A.size();
vector<int> vals(length, 0);
for (int i = 0; i < length; i++)
{
for (int j = 0; j < length; j++)
{
if (j < i)
vals[i] += j*A[length - i + j];
else
vals[i] += j*A[j - i];
}
}
int rst = INT_MIN;
for (int i = 0; i < length; i++)
if (rst < vals[i])
rst = vals[i];
return rst;
}
提交虽然通过了,但是效率太低了,用了1492ms,分析可知时间复杂度为O(n2),肯定还有更好的方法。
假设A={a0,a1,a2,a3},则
F(0)=0*a0+1*a1+2*a2+3*a3
F(1)=0*a3+1*a0+2*a1+3*a2
F(2)=0*a2+1*a3+2*a0+3*a1
F(3)=0*a1+1*a2+2*a3+3*a0
设sum为数组A所有元素的和,即sum=a0+a1+a2+a3,观察F(0)~F(3)可知:
F(1)=F(0)+sum-4*a3
F(2)=F(1)+sum-4*a2
F(3)=F(2)+sum-4*a1
归纳可知:F(k)=F(k-1)+sum-n*A(n-k)
计算所有F(0)~F(n-1),找出最大的即可,时间复杂度为O(n)。
代码如下:
int maxRotateFunction(vector<int>& A)
{
int len = A.size();
long long sum = 0, rst = 0;
for (int i = 0; i < len; i++)
{
sum += A[i];
rst += i*A[i];
}
long long maxRst = rst;
for (int i = 1; i < len; i++)
{
rst = rst + sum - len*A[len - i];
if (maxRst < rst)
maxRst = rst;
}
return (int)maxRst;
}
提交发现仅用了10ms!
浙公网安备 33010602011771号