LOJ #2348. 「JOI 2018 Final」美术展览

CSDN同步

题目链接

简要题意:

\(n\) 个艺术品,分别有尺寸 \(A_i\) 和价值 \(B_i\). 选定若干艺术品的“总价值”为 其价值之和减去尺寸的极差。极差即为最大值和最小值的差。求这个“总价值”的最大值。

\(n \leq 5 \times 10^5\)\(1 \leq A_i \leq 10^{15}\)\(1 \leq B_i \leq 10^9 (1 \leq i \leq n)\).

算法一

首先考虑一个 \(\mathcal{O}(n^2)\) 的简易做法。

套路按 \(A\) 排序,贪心地,如果在已选定的若干艺术品中可以加入一个艺术品,使得该艺术品的尺寸在原来的最大值和最小值之间,那么该艺术品可以加入,这样是不用减去极差就可以加价值的操作。

所以按 \(A\) 排序后,选的艺术品必然是一个连续的区间,这样可以套路设 \(s\)\(B\) 的前缀和,快速计算价值之和。

这样枚举左端点 \(i\),扩展右端点 \(j\),则 \([i,j]\) 的“总价值”为:

\[s_j - s_{i-1} - (a_j - a_i) \]

时间复杂度:\(\mathcal{O}(n^2)\).

算法二

考虑如何优化算法一?

套路枚举左端点 \(i\),如何快速确定 \(j\)

\[s_j - s_{i-1} - (a_j - a_i) = (a_i - s_{i-1}) + (s_j - a_j) \]

其中 \(a_i - s_{i-1}\) 当我们选定 \(i\) 后就不变了,我们需要快速求出 \(\max_{j=i}^n (s_j - a_j)\).

\(\text{tmax}_i = \max_{j=i}^n (s_j - a_j)\),考虑如何预处理 \(\text{tmax}\)

很显然,倒着枚举 \(i\),用 \(\text{tmax}_{i+1}\) 的结果和当前的 \(s_i - a_i\) 取一个较大即可。

时间复杂度:\(\mathcal{O}(n)\).

注:这里有一个小细节。如果你这样写:

typedef long long ll;
const int N=5e5+1;

...

struct art {
	ll A,B;
} a[N];

...

for(int i=1;i<=n;i++) s[i]=s[i-1]+a[i].B;
for(int i=n;i>=1;i--) tmax[i]=max(tmax[i+1],s[i]-a[i].A);

将会得到错误的答案。

观察可以发现,答案可能是负数,所以 \(\text{tmax}\) 也可能是负数。

而数组默认 \(\text{tmax}_{n+1} = 0\),这样会影响整个数组,因而答案错误。

所以要预先处理一个极小值。

时间复杂度:\(\mathcal{O}(n)\).

实际得分:\(100pts\).

\(168\) 个测试点好评

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=5e5+2;

inline ll read(){char ch=getchar(); ll f=1; while(!isdigit(ch)) {if(ch=='-') f=-f; ch=getchar();}
	   ll x=0;while(isdigit(ch)) x=x*10+ch-'0',ch=getchar(); return x*f;}

struct art {
	ll A,B;
} a[N]; int n;
ll tmax[N],s[N];
ll ans=-(1ll<<62);

inline ll max(ll x,ll y) {return x>y?x:y;}

inline bool cmp(art x,art y) {
	return x.A<y.A;
}

int main() {
	n=read(); tmax[n+1]=ans; // ans 此时为极小值
	for(int i=1;i<=n;i++) a[i].A=read(),a[i].B=read();
	sort(a+1,a+1+n,cmp);
	for(int i=1;i<=n;i++) s[i]=s[i-1]+a[i].B;
	for(int i=n;i>=1;i--) tmax[i]=max(tmax[i+1],s[i]-a[i].A);
	for(int i=1;i<=n;i++) ans=max(ans,a[i].A-s[i-1]+tmax[i]);
	printf("%lld\n",ans);
	return 0;
}



posted @ 2020-10-03 21:53  bifanwen  阅读(239)  评论(0)    收藏  举报