連結 / Connectivity(AtCoder-2159)

Problem Description

There are N cities. There are also K roads and L railways, extending between the cities. The i-th road bidirectionally connects the pi-th and qi-th cities, and the i-th railway bidirectionally connects the ri-th and si-th cities. No two roads connect the same pair of cities. Similarly, no two railways connect the same pair of cities.

We will say city A and B are connected by roads if city B is reachable from city A by traversing some number of roads. Here, any city is considered to be connected to itself by roads. We will also define connectivity by railways similarly.

For each city, find the number of the cities connected to that city by both roads and railways.

Constraints

  • 2≦N≦2*105
  • 1≦K,L≦105
  • 1≦pi,qi,ri,siN
  • pi<qi
  • ri<si
  • When ij, (pi,qi)≠(pj,qj)
  • When ij, (ri,si)≠(rj,sj)

Input

The input is given from Standard Input in the following format:

N K L
p1 q1
:
pK qK
r1 s1
:
rL sL

Output

Print N integers. The i-th of them should represent the number of the cities connected to the i-th city by both roads and railways.

Example

Sample Input 1

4 3 1
1 2
2 3
3 4
2 3

Sample Output 1

1 2 2 1
All the four cities are connected to each other by roads.

By railways, only the second and third cities are connected. Thus, the answers for the cities are 1,2,2 and 1, respectively.

Sample Input 2

4 2 2
1 2
2 3
1 4
2 3

Sample Output 2

1 2 2 1

Sample Input 3

7 4 4
1 2
2 3
2 5
6 7
3 5
4 5
3 4
6 7

Sample Output 3

1 1 2 1 2 2 2

题意:n 个点 k 条公路 l 条铁路,分别给出两种路连接的城市,对于每个城市,求可以通过公路、铁路都能到达的城市有几个,包括其自身

思路:首先对于公路与铁路,利用并查集求出他们的连通块,由于要求通过公路、铁路都能到达的城市,因此直接求两个并查集的交集即可,利用 map+pair 统计即可

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
const int MOD = 1E9+7;
const int N = 200000+5;
const int dx[] = {0,0,-1,1,-1,-1,1,1};
const int dy[] = {-1,1,0,0,-1,1,-1,1};
using namespace std;
int fatherRoad[N],fatherRail[N];
int Find(int father[],int x){
    if(x!=father[x])
        return father[x]=Find(father,father[x]);
    return x;
}
void Union(int father[],int x,int y){
    x=Find(father,x);
    y=Find(father,y);
    if(x!=y)
        father[y]=x;
}
int main() {
    int n,k,l;
    scanf("%d%d%d",&n,&k,&l);
    for(int i=1;i<=n;i++){
        fatherRoad[i]=i;
        fatherRail[i]=i;
    }
    for(int i=1;i<=k;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        Union(fatherRoad,x,y);
    }
    for(int i=1;i<=l;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        Union(fatherRail,x,y);
    }

    for(int i=1;i<=n;i++){
        Find(fatherRoad,i);
        Find(fatherRail,i);
    }
    map<pair<int,int>,int> mp;
    for(int i=1;i<=n;i++)
        mp[make_pair(fatherRoad[i],fatherRail[i])]++;
    for(int i=1;i<=n;i++)
        printf("%d\n",mp[make_pair(fatherRoad[i],fatherRail[i])]);
    return 0;
}

 

posted @ 2022-09-20 22:55  老程序员111  阅读(36)  评论(0)    收藏  举报