loj3120 「CTS2019 | CTSC2019」珍珠

link

 

.... 感觉自己太颓废了。。。。还是来更题解吧。。。【话说写博客会不会涨 rp 啊 qaq ?

 

题意:

有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对。现在要求至少能配 m 对,问方案数? $n,m\leq 10^9,D\leq 10^5$

 

题解:

配对数量 $\geq m \Longleftrightarrow$ 出现奇数次的权值个数 $\leq n-2m$ 。

一个权值出现偶数次的生成函数: $\frac{e^x +e^{-x}}{2}$

一个权值出现奇数次的生成函数: $\frac{e^x - e^{-x}}{2}$

答案的式子:

$$ \begin{aligned} &n!\sum_{k=0}^{n-2m} \left ( \frac{e^x +e^{-x}}{2} + y \frac{e^x - e^{-x}}{2} \right )^D [x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \left (e^x + e^{-x} + y\left ( e^x - e^{-x} \right )\right )^D[x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \left (e^x (1+y) + e^{-x}(1-y) \right )^D[x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \sum_{i=0}^{D}\binom{D}{i} \left (e^{x}(1+y) \right )^i \left( e^{-x}(1-y)\right )^{D-i} [x^n][y^k]\\ =&n!\left (\frac12 \right )^D \sum_{k=0}^{n-2m} \sum_{i=0}^{D}\binom{D}{i} e^{\left (2i-D\right )x} (1+y)^i (1-y)^{D-i} [x^n][y^k]\\ =&\left (\frac12 \right )^D \sum_{i=0}^{D} \binom{D}{i} (2i-D)^n \sum_{k=0}^{n-2m} (1+y)^i (1-y)^{D-i} [y^k] \end{aligned}$$

这就是最后的式子。

考虑怎么对于每个 i 快速求出后面的 $\sum_{k=0}^{n-2m} (1+y)^i (1-y)^{D-i} [y^k]$ ?

可以发现这是一个生成函数的系数前缀和。

即 $\left ( (1+y)^i (1-y)^{D-i} \right )\left (1+y+y^2+y^3+...\right ) [y^{n-2m}]$ ;

即 $\left ( (1+y)^i (1-y)^{D-i} \right )\left (\frac{1}{1-y}\right ) [y^{n-2m}]$ 。

可以发现当 $i\neq D$ 的时候,上式 $= \left ( (1+y)^i (1-y)^{D-i-1} \right )[y^{n-2m}]$ ;

$i=D$ 的时候上式 $=\sum_{k=0}^{n-2m} (1+y)^D [y^k]$ ,由于 $(1+y)^D$ 中 $y$ 不超过 D 次,所以有效的 $k\leq D$ ,暴力计算即可。

那 $i\neq D$ 的时候怎么办呢?我们记 $k=n-2m$ ,$d=D-1$ ,枚举两边对 k 的贡献,即

$$\sum_{j=0}^k \binom{i}{j} \binom{d-i}{k-j}(-1)^{k-j}$$

这种组合数的形式的转化当然是套路的阶乘展开啦——

$$\begin{aligned} \sum_{j=0}^k \frac{i!}{j!(i-j)!} \cdot \frac{(d-i)!}{(k-j)!(d-i-k+j)!} \cdot (-1)^{k-j}\\ =i!(d-i)!\sum_{j=0}^k \frac{(-1)^{k-j}}{j!(k-j)!} \cdot \frac{1}{(i-j)!(d-i-k+j)!}\\ \end{aligned}$$

就是个卷积形式了, fft 即可。

复杂度 $\mathcal{O}(D \log D).$

 

code:

 1 #include<bits/stdc++.h>
 2 #define rep(i,x,y) for (int i=(x);i<=(y);i++)
 3 #define ll long long
 4 
 5 using namespace std;
 6 
 7 const int N=(1<<18)+10,mod=998244353,inv2=(mod+1)>>1;
 8 int D,n,m,k,d,fac[N],ifac[N],ans,invn,w[N],r[N],a[N],b[N];
 9 
10 int ksm(int x,int y){
11     int s=1; x=(x+mod)%mod;
12     for (;y;y>>=1,x=(ll)x*x%mod) if (y&1) s=(ll)s*x%mod;
13     return s;
14 }
15 
16 void init(int n){
17     fac[0]=1;
18     rep (i,1,n) fac[i]=(ll)fac[i-1]*i%mod;
19     ifac[n]=ksm(fac[n],mod-2);
20     for (int i=n;i;i--) ifac[i-1]=(ll)ifac[i]*i%mod;
21 }
22 
23 int C(int n,int m){
24     if (n<m) return 0;
25     return (ll)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
26 }
27 
28 inline void upd(int &x,int y){x+=y; x-=x>=mod?mod:0;}
29 
30 void fft_init(int &n){
31     int len=0; while (1<<len<n) len++; n=1<<len;
32     int G=ksm(3,(mod-1)>>len); invn=ksm(n,mod-2);
33     w[0]=w[n]=1;
34     rep (i,1,n-1) w[i]=(ll)w[i-1]*G%mod,r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
35 }
36 
37 void fft(int *a,int all,int fl){
38     rep (i,0,all-1) if (i<r[i]) swap(a[i],a[r[i]]);
39     int n=2,m=1,x=all>>1;
40     for (;n<=all;m=n,n<<=1,x>>=1)
41         for (int i=0;i<all;i+=n)
42             for (int k=0;k<m;k++){
43                 int t=(ll)w[fl?all-x*k:x*k]*a[i+m+k]%mod;
44                 a[i+m+k]=(a[i+k]+mod-t)%mod;
45                 a[i+k]=(a[i+k]+t)%mod;
46             }
47     if (fl) rep (i,0,all-1) a[i]=(ll)a[i]*invn%mod;
48 }
49 
50 int main(){
51     scanf("%d%d%d",&D,&n,&m),init(D);
52     k=min(n-2*m,D),d=D-1;
53     rep (i,0,k) a[i]=(ll)(((k-i)&1)?mod-1:1)%mod*ifac[i]%mod*ifac[k-i]%mod;
54     rep (i,0,d) if (d-k-i>=0) b[i]=(ll)ifac[i]%mod*ifac[d-k-i]%mod;
55     int _n=k+d+1; fft_init(_n);
56     fft(a,_n,0),fft(b,_n,0);
57     rep (i,0,_n-1) a[i]=(ll)a[i]*b[i]%mod;
58     fft(a,_n,1);
59     rep (i,0,d) a[i]=(ll)a[i]*fac[i]%mod*fac[d-i]%mod;
60     rep (i,0,D){
61         int v=(ll)C(D,i)*ksm(2*i-D,n)%mod,tmp=0;
62         if (i==D) rep (i,0,k) upd(tmp,C(D,i));
63         else tmp=a[i];
64         upd(ans,(ll)tmp*v%mod);
65     }
66     printf("%lld\n",(ll)ans*ksm(inv2,D)%mod);
67     return 0;
68 }
View Code

 

posted @ 2019-05-18 22:16 bestfy 阅读(...) 评论(...) 编辑 收藏