素数环

题目链接:https://www.luogu.com.cn/problem/solution/UVA524

题意:

按1逆时针排列构成的环每个数+左边或右边的数构成素数,输出排列

题意:

经典大法师,思路是用静态数组A模拟,递归压栈cur,重点是不能取重以及回溯

#include<bits/stdc++.h>
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define pb push_back
#define endl "\n"
#define fi first
#define se second
//#pragma GCC optimize(3)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef __int128 lll;
typedef pair<int,int> pii;
const int inf=0x3f3f3f3f;
const ll llmax=LLONG_MAX;
const int maxn=1e5+5;
const int mod=1e9+7;
int a[50];
unordered_set<int>prime;
bool p[maxn];
bool v[50];
int n;
void e(){
	for(int i=2;i<=50;i++){
		if(!p[i]){
			prime.insert(i);
			for(int j=i*i;j<=50;j+=i)p[j]=true;
		}
	}
}








void dfs(int cur){
	if(cur==n+1&&prime.count(a[n]+a[1])){
		for(int i=1;i<=n-1;i++){
			cout<<a[i]<<' ';
		}
		cout<<a[n];
		cout<<endl;
		return;
	}
	
	for(int i=2;i<=n;i++){
		if(!v[i]&&prime.count(a[cur-1]+i)){
			a[cur]=i;
			v[i]=true;
			dfs(cur+1);
			v[i]=false;
		}	
	}
}


void solve(){
	a[1]=1;
	e();
	int k=1;
	
	while(scanf("%d",&n)!=EOF){
		if(k>=2)cout<<endl;
		 cout<<"Case "<< k++ <<':'<<endl;
		 dfs(2);
	}
	
}

signed main()
{

	int T=1;
	
	while(T--){
	solve();
	}
	
	return 0;
}


posted @ 2025-03-07 17:17  Marinaco  阅读(20)  评论(0)    收藏  举报
//雪花飘落效果