E.全都要
题目链接:https://ac.nowcoder.com/acm/contest/102896/E
题意:
给定一个长度为n的数值数组,每次可以走1~6步,询问走了k步后能获得的最大数值
思路:
规定状态dp[i,j]为走了j步走到第i个格子上获得的最大数值
转移方程:dp[i-step,j-1]+a[i] -> dpi,j
dp[0,0]=0;其余为负无穷
ps:以后不用静态数组了,不知道出现啥奇奇怪怪的情况
#include<bits/stdc++.h>
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define pb push_back
#define endl "\n"
#define fi first
#define se second
//#pragma GCC optimize(3)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef __int128 lll;
typedef pair<int,int> pii;
const int inf=0x3f3f3f3f;
const ll llmax=LLONG_MAX;
const int maxn=1e5+5;
const int mod=1e9+7;
void solve(){
int n,k;cin>>n>>k;
vector<ll>a(n+1);
rep(i,1,n) cin>>a[i];
vector<vector<ll>>dp(n+1,vector<ll>(k+1,-1e17));
dp[0][0]=0;
ll ans=-1e17-5;
for(int i=1;i<=n;i++){
for(int j=1;j<=min(i,k);j++){
for(int p=max(0,i-6);p<=i-1;p++){
dp[i][j]=max(dp[i][j],dp[p][j-1]+a[i]);
}
}
ans=max(ans,dp[i][k]);
}
cout<<ans<<endl;
}
signed main()
{
ios::sync_with_stdio(false),cin.tie(0);
solve();
return 0;
}

浙公网安备 33010602011771号