207. Course Schedule I & II

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

From: http://www.programcreek.com/2014/05/leetcode-course-schedule-java/

分析:

建立有向图,利用Toplogical sort逐一去掉没有father的节点。如果最后总的节点大于没有父节点的个数,表面里面有环。

 1 public boolean canFinish(int numCourses, int[][] prerequisites) {
 2         if (prerequisites == null) return true;
 3         Map<Integer, Node> map = new HashMap<Integer, Node>();
 4         
 5         for (int[] row : prerequisites) {
 6             if (!map.containsKey(row[0])) {
 7                 map.put(row[0], new Node(row[0], 0));
 8             }
 9             
10             if (!map.containsKey(row[1])) {
11                 map.put(row[1], new Node(row[1], 0));
12             }
13             
14             map.get(row[0]).inDegree++;
15             map.get(row[1]).list.add(map.get(row[0]));
16         }
17         
18         Queue<Node> queue = new LinkedList<Node>();
19         for (Node node : map.values()) {
20             if (node.inDegree == 0) {
21                 queue.offer(node);
22             }
23         }
24         
25         while (!queue.isEmpty()) {
26             Node node = queue.poll();
27             for (Node child : node.list) {
28                 child.inDegree--;
29                 if (child.inDegree == 0) {
30                     queue.offer(child);
31                 }
32             }
33         }
34         for (Node node : map.values()) {
35             if (node.inDegree != 0) {
36                 return false;
37             }
38         }
39         return true;
40         
41     }
42 }
43 
44 class Node {
45     int value;
46     int inDegree;
47     List<Node> list;
48 
49     public Node(int value, int inDegree) {
50         this.value = value;
51         this.inDegree = inDegree;
52         list = new ArrayList<Node>();
53     }
54 }

还有一种方法就是用dfs来看是否有back edge.

class Solution {
public static boolean hasCycle(List<List<Integer>> graph) {
        // null input checks, etc
        
        int numNodes = graph.size();
        boolean[] visited = new boolean[numNodes];
        boolean[] current = new boolean[numNodes];

        for (int i = 0; i < numNodes; ++i) {
            if (!visited[i]) {
                boolean foundCycle = dfs(graph, visited, current, i);
                if (foundCycle) {
                    return true;
                }
            }
        }
    
        return false;
    }
    
    private static boolean dfs(List<List<Integer>> graph, boolean[] visited, boolean[] current, int pos) {
        if (current[pos]) {
            return true;
        }
        if (visited[pos]) {
            return false;
        }
        visited[pos] = true;
        current[pos] = true;
    
        List<Integer> adj = graph.get(pos);
        for (int dest : adj) {
            boolean res = dfs(graph, visited, current, dest);
            if (res) {
                return true;
            }
        }
    
        current[pos] = false;
        return false;
    }
}

Python version

 1 from collections import defaultdict
 2 
 3 class Solution:
 4     def buildAdjacencyMap(self, edgesList):
 5         adjMap = defaultdict(list)
 6         for c1, c2 in edgesList:
 7             adjMap[c2].append(c1)
 8         return adjMap
 9 
10     def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
11         adjMap = self.buildAdjacencyMap(prerequisites)
12         state = [0] * numCourses
13 
14         def hasCycle(v):
15             if state[v] == 1:
16                 return False
17             if state[v] == -1:
18                 return True
19             state[v] = -1
20 
21             for neighbor in adjMap[v]:
22                 if hasCycle(neighbor):
23                     return True
24             state[v] = 1
25             return False
26 
27         for v in range(numCourses):
28             if hasCycle(v):
29                 return False
30         return True
 1 from collections import deque, defaultdict
 2 from typing import List
 3 
 4 class Solution:
 5     def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
 6         adj = defaultdict(list)
 7         indegree = [0] * numCourses
 8 
 9         # Build graph and indegree array
10         for course, pre in prerequisites:
11             adj[pre].append(course)
12             indegree[course] += 1
13 
14         # Start with nodes having indegree 0
15         queue = deque()
16         for i in range(numCourses):
17             if indegree[i] == 0:
18                 queue.append(i)
19 
20         finished = 0
21 
22         # BFS
23         while queue:
24             node = queue.popleft()
25             finished += 1
26 
27             for neighbor in adj[node]:
28                 indegree[neighbor] -= 1
29                 if indegree[neighbor] == 0:
30                     queue.append(neighbor)
31 
32         return finished == numCourses

Course Schedule II

找出选课的顺序。

public class Solution {
    public int[] findOrder(int n, int[][] prerequisites) {
        if (prerequisites == null) return new int[0];
        Map<Integer, Node> map = new HashMap<Integer, Node>();
        // very important
        for (int i = 0; i < n; i++){
            map.put(i, new Node(i, 0));
        }
        
        
        for (int[] row : prerequisites) {
            map.get(row[0]).inDegree++;
            map.get(row[1]).list.add(map.get(row[0]));
        }
        
        List<Integer> list = new ArrayList<Integer>();
        
        Queue<Node> queue = new LinkedList<Node>();
        for (Node node : map.values()) {
            if (node.inDegree == 0) {
                queue.offer(node);
            }
        }
        
        while (!queue.isEmpty()) {
            Node node = queue.poll();
            list.add(node.value);
            for (Node child : node.list) {
                child.inDegree--;
                if (child.inDegree == 0) {
                    queue.offer(child);
                }
            }
        }
        if (list.size() < n) return new int[0];
        int[] result = new int[list.size()];
        for (int i = 0; i < list.size(); i++) {
            result[i] = list.get(i);
        }
        return result;
    }
}

class Node {
    int value;
    int inDegree;
    List<Node> list;

    public Node(int value, int inDegree) {
        this.value = value;
        this.inDegree = inDegree;
        list = new ArrayList<Node>();
    }
}

Python Version

 1 from collections import defaultdict, deque
 2 from typing import List
 3 
 4 class Solution:
 5     def buildAdjacencyMap(self, edgesList):
 6         adjMap = defaultdict(list)
 7         for c1, c2 in edgesList:
 8             adjMap[c2].append(c1)
 9         return adjMap
10 
11     def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
12         adjMap = self.buildAdjacencyMap(prerequisites)
13         topoOrder = []
14         inDegrees = defaultdict(int)
15 
16         # build indegree map
17         for v1, _ in prerequisites:
18             inDegrees[v1] += 1
19 
20         queue = deque()
21         # add all nodes with indegree 0
22         for v in range(numCourses):
23             if inDegrees[v] == 0:
24                 queue.append(v)
25 
26         while queue:
27             v = queue.popleft()
28             topoOrder.append(v)
29 
30             for des in adjMap[v]:
31                 inDegrees[des] -= 1
32                 if inDegrees[des] == 0:
33                     queue.append(des)
34 
35         if len(topoOrder) != numCourses:
36             return []
37         return topoOrder

 

posted @ 2016-10-11 11:48  北叶青藤  阅读(391)  评论(0)    收藏  举报