973. K Closest Points to Origin
We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
1 class Solution { 2 // Approach 1 3 public int[][] kClosest2(int[][] points, int K) { 4 Queue<int[]> pq = new PriorityQueue<int[]>((p1, p2) -> p2[0] * p2[0] + p2[1] * p2[1] - p1[0] * p1[0] - p1[1] * p1[1]); 5 for (int[] p : points) { 6 pq.offer(p); 7 if (pq.size() > K) { 8 pq.poll(); 9 } 10 } 11 int[][] res = new int[K][2]; 12 while (K > 0) { 13 K--; 14 res[K] = pq.poll(); 15 } 16 return res; 17 } 18 19 // Approach 2 20 public int[][] kClosest(int[][] points, int K) { 21 int len = points.length, l = 0, r = len - 1; 22 while (l <= r) { 23 int mid = partition(points, l, r); 24 if (mid == K) { 25 break; 26 } else if (mid < K) { 27 l = mid + 1; 28 } else { 29 r = mid - 1; 30 } 31 } 32 return Arrays.copyOfRange(points, 0, K); 33 } 34 35 private int compare(int[] p1, int[] p2) { 36 return p1[0] * p1[0] + p1[1] * p1[1] - p2[0] * p2[0] - p2[1] * p2[1]; 37 } 38 39 private int partition(int[][] A, int start, int end) { 40 int p = start; 41 for (int i = start; i <= end - 1; i++) { 42 if (compare(A[i], A[end]) < 0) { 43 swap(A, p, i); 44 p++; 45 } 46 } 47 swap(A, p, end); 48 return p; 49 } 50 51 private void swap(int[][] nums, int i, int j) { 52 int[] temp = nums[i]; 53 nums[i] = nums[j]; 54 nums[j] = temp; 55 } 56 }

浙公网安备 33010602011771号