虚拟机字节码执行引擎(一)

运行时栈帧结构

Java虚拟机以方法作为最基本的执行单元,“栈帧”(Stack Frame)则是用于支持虚拟机进行方法调用和方法执行背后的数据结构,它也是虚拟机运行时数据区中的虚拟机栈(Virtual Machine Stack)的栈元素。栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回地址等信息。每
一个方法从调用开始至执行结束的过程,都对应着一个栈帧在虚拟机栈里面从入栈到出栈的过程。

每一个栈帧都包括了局部变量表、操作数栈、动态连接、方法返回地址和一些额外的附加信息。在编译Java程序源码的时候,栈帧中需要多大的局部变量表,需要多深的操作数栈就已经被分析计算出来,并且写入到方法表的Code属性之中。换言之,一个栈帧需要分配多少内存,并不会受到程序运行期变量数据的影响,而仅仅取决于程序源码和具体的虚拟机实现的栈内存布局形式。

一个线程中的方法调用链可能会很长,以Java程序的角度来看,同一时刻、同一条线程里面,在调用堆栈的所有方法都同时处于执行状态。而对于执行引擎来讲,在活动线程中,只有位于栈顶的方法才是在运行的,只有位于栈顶的栈帧才是生效的,其被称为“当前栈帧”(Current Stack Frame),与这个栈帧所关联的方法被称为“当前方法”(Current Method)。执行引擎所运行的所有字节码指令都只针对当前栈帧进行操作,在概念模型上,典型的栈帧结构如图8-1所示。

图8-1所示的就是虚拟机栈和栈帧的总体结构,接下来,我们将会详细了解栈帧中的局部变量表、操作数栈、动态连接、方法返回地址等各个部分的作用和数据结构。

 

 

图8-1   栈帧的概念结构

一个变量槽可以存放一个32位以内的数据类型,Java中占用不超过32位存储空间的数据类型有boolean、byte、char、short、int、float、reference[1]和returnAddress这8种类型。前面6种不需要多加解释,而第7种reference类型表示对一个对象实例的引用,《Java虚拟机规范》既没有说明它的长度,也没有明确指出这种引用应有怎样的结构。但是一般来说,虚拟机实现至少都应当能通过这个引用做到两件事情,一是从根据引用直接或间接地查找到对象在Java堆中的数据存放的起始地址或索引,二是根据引用直接或间接地查找到对象所属数据类型在方法区中的存储的类型信息,否则将无法实现《Java语言规范》中定义的语法约定。第8种returnAddress类型目前已经很少见了,它是为字节码指令jsr、jsr_w和ret服务的,指向了一条字节码指令的地址,某些很古老的Java虚拟机曾经使用这几条指令来实现异常处理时的跳转,但现在也已经全部改为采用异常表来代替了。

对于64位的数据类型,Java虚拟机会以高位对齐的方式为其分配两个连续的变量槽空间。Java语言中明确的64位的数据类型只有long和double两种。这里把long和double数据类型分割存储的做法与“long和double的非原子性协定”中允许把一次long和double数据类型读写分割为两次32位读写的做法有些类似。不过,由于局部变量表是建立在线程堆栈中的,属于线程私有的数据,无论读写两个连续的变量槽是否为原子操作,都不会引起数据竞争和线程安全问题。

Java虚拟机通过索引定位的方式使用局部变量表,索引值的范围是从0开始至局部变量表最大的变量槽数量。如果访问的是32位数据类型的变量,索引N就代表了使用第N个变量槽,如果访问的是64位数据类型的变量,则说明会同时使用第N和N+1两个变量槽。对于两个相邻的共同存放一个64位数据的两个变量槽,虚拟机不允许采用任何方式单独访问其中的某一个,《Java虚拟机规范》中明确要求了如果遇到进行这种操作的字节码序列,虚拟机就应该在类加载的校验阶段中抛出异常。

当一个方法被调用时,Java虚拟机会使用局部变量表来完成参数值到参数变量列表的传递过程,即实参到形参的传递。如果执行的是实例方法(没有被static修饰的方法),那局部变量表中第0位索引的变量槽默认是用于传递方法所属对象实例的引用,在方法中可以通过关键字“this”来访问到这个隐含的参数。其余参数则按照参数表顺序排列,占用从1开始的局部变量槽,参数表分配完毕后,再根据方法体内部定义的变量顺序和作用域分配其余的变量槽。

为了尽可能节省栈帧耗用的内存空间,局部变量表中的变量槽是可以重用的,方法体中定义的变量,其作用域并不一定会覆盖整个方法体,如果当前字节码PC计数器的值已经超出了某个变量的作用域,那这个变量对应的变量槽就可以交给其他变量来重用。不过,这样的设计除了节省栈帧空间以外,还会伴随有少量额外的副作用,例如在某些情况下变量槽的复用会直接影响到系统的垃圾收集行为,请看代码8-1、代码8-2和代码8-3的3个演示。

代码8-1   局部变量表槽复用对垃圾收集的影响之一

public static void main(String[] args)() {
	byte[] placeholder = new byte[64 * 1024 * 1024];
	System.gc();
}

  

代码8-1中的代码很简单,向内存填充了64MB的数据,然后通知虚拟机进行垃圾收集。我们在虚拟机运行参数中加上“-verbose:gc”来看看垃圾收集的过程,发现在System.gc()运行后并没有回收掉这64MB的内存,下面是运行的结果:

[GC (System.gc())  70792K->66352K(251392K), 0.0007000 secs]
[Full GC (System.gc())  66352K->66212K(251392K), 0.0041151 secs]

  

代码8-1的代码没有回收掉placeholder所占的内存是能说得过去,因为在执行System.gc()时,变量placeholder还处于作用域之内,虚拟机自然不敢回收掉placeholder的内存。那我们把代码修改一下,变成代码8-2的样子。

代码8-2   局部变量表Slot复用对垃圾收集的影响之二

public static void main(String[] args) {
    {
        byte[] placeholder = new byte[64 * 1024 * 1024];
    }
    System.gc();
}

  

加入了花括号之后,placeholder的作用域被限制在花括号以内,从代码逻辑上讲,在执行System.gc()的时候,placeholder已经不可能再被访问了,但执行这段程序,会发现运行结果如下,还是有64MB的内存没有被回收掉,这又是为什么呢?

[GC (System.gc())  70792K->66416K(251392K), 0.0007739 secs]
[Full GC (System.gc())  66416K->66212K(251392K), 0.0044062 secs]

  

在解释为什么之前,我们先对这段代码进行第二次修改,在调用System.gc()之前加入一行“inta=0;”,变成代码8-3的样子。

代码8-3   局部变量表Slot复用对垃圾收集的影响之三

public static void main(String[] args) {
    {
        byte[] placeholder = new byte[64 * 1024 * 1024];
    }
    int a = 0;
    System.gc();
}

  

这个修改看起来很莫名其妙,但运行一下程序,却发现这次内存真的被正确回收了。

[GC (System.gc())  70792K->66400K(251392K), 0.0008860 secs]
[Full GC (System.gc())  66400K->675K(251392K), 0.0044742 secs]

  

代码8-1至8-3中,placeholder能否被回收的根本原因就是:局部变量表中的变量槽是否还存有关于placeholder数组对象的引用。第一次修改中,代码虽然已经离开了placeholder的作用域,但在此之后,再没有发生过任何对局部变量表的读写操作,placeholder原本所占用的变量槽还没有被其他变量所复用,所以作为GC Roots一部分的局部变量表仍然保持着对它的关联。这种关联没有被及时打断,绝大部分情况下影响都很轻微。但如果遇到一个方法,其后面的代码有一些耗时很长的操作,而前面
又定义了占用了大量内存但实际上已经不会再使用的变量,手动将其设置为null值(用来代替那句int a=0,把变量对应的局部变量槽清空) 便不见得是一个绝对无意义的操作,这种操作可以作为一种在极特殊情形(对象占用内存大、此方法的栈帧长时间不能被回收、方法调用次数达不到即时编译器的编译条件) 下的“奇技”来使用。

虽然代码清单8-1至8-3的示例说明了赋null操作在某些极端情况下确实是有用的,但我们不应当对赋null值操作有什么特别的依赖,更没有必要把它当作一个普遍的编码规则来推广。原因有两点:

从编码角度讲,以恰当的变量作用域来控制变量回收时间才是最优雅的解决方法,如代码清单8-3那样的场景除了做实验外几乎毫无用处。更关键的是,从执行角度来讲,使用赋null操作来优化内存回收是建立在对字节码执行引擎概念模型的理解之上的,当虚拟机使用解释器执行时,通常与概念模型还会比较接近,但经过即时编
译器施加了各种编译优化措施以后,两者的差异就会非常大,只保证程序执行的结果与概念一致。在实际情况中,即时编译才是虚拟机执行代码的主要方式,赋null值的操作在经过即时编译优化后几乎是一定会被当作无效操作消除掉的,这时候将变量设置为null就是毫无意义的行为。字节码被即时编译为本地代码后,对GC Roots的枚举也与解释执行时期有显著差别,以前面的例子来看,经过第一次修改的代码清单8-2在经过即时编译后,System.gc()执行时就可以正确地回收内存,根本无须写成代码清单8-3的样子。

关于局部变量表,还有一点可能会对实际开发产生影响,就是局部变量不像前面介绍的类变量那样存在“准备阶段”。我们知道类的字段变量有两次赋初始值的过程,一次在准备阶段,赋予系统初始值; 另外一次在初始化阶段,赋予程序员定义的初始值。因此即使在初始化阶段程序员没有为类变量赋值也没有关系,类变量仍然具有一个确定的初始值,不会产生歧义。但局部变量就不一样了,如果一个局部变量定义了但没有赋初始值,那它是完全不能使用的。所以不要认为Java中任何情况下都存在诸如整型变量默认为0、布尔型变量默认为false等这样的默认值规则。如代码8-4所示,这段代码在Java中其实并不能运行( 但是在其他语言,譬如C和C++中类似的代码是可以运行的),所幸编译器能在编译期间就检查到并提示出这一点,即便编译能通过或者手动生成字节码的方式制造出下面代码的效果,字节码校验的时候也会被虚拟机发现而导致类加载失败。

代码8-4

public static void main(String[] args) {
    int a;
    System.out.println(a);
}

  

操作数栈(Operand Stack)也常被称为操作栈,它是一个后入先出(Last In First Out,LIFO)栈。同局部变量表一样,操作数栈的最大深度也在编译的时候被写入到Code属性的max_stacks数据项之中。操作数栈的每一个元素都可以是包括long和double在内的任意Java数据类型。32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。Javac编译器的数据流分析工作保证了在方法执行的任何时候,操作数栈的深度都不会超过在max_stacks数据项中设定的最大值。

当一个方法刚刚开始执行的时候,这个方法的操作数栈是空的,在方法的执行过程中,会有各种字节码指令往操作数栈中写入和提取内容,也就是出栈和入栈操作。譬如在做算术运算的时候是通过将运算涉及的操作数栈压入栈顶后调用运算指令来进行的,又譬如在调用其他方法的时候是通过操作数栈来进行方法参数的传递。举个例子,例如整数加法的字节码指令iadd,这条指令在运行的时候要求操作数栈中最接近栈顶的两个元素已经存入了两个int型的数值,当执行这个指令时,会把这两个int
值出栈并相加,然后将相加的结果重新入栈。

操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,在编译程序代码的时候,编译器必须要严格保证这一点,在类校验阶段的数据流分析中还要再次验证这一点。再以上面的iadd指令为例,这个指令只能用于整型数的加法,它在执行时,最接近栈顶的两个元素的数据类型必须为int型,不能出现一个long和一个float使用iadd命令相加的情况。

另外在概念模型中,两个不同栈帧作为不同方法的虚拟机栈的元素,是完全相互独立的。但是在大多虚拟机的实现里都会进行一些优化处理,令两个栈帧出现一部分重叠。让下面栈帧的部分操作数栈与上面栈帧的部分局部变量表重叠在一起,这样做不仅节约了一些空间,更重要的是在进行方法调用时就可以直接共用一部分数据,无须进行额外的参数复制传递了,重叠的过程如图8-2所示。

 

图8-2   两个栈帧之间的数据共享


Java虚拟机的解释执行引擎被称为“基于栈的执行引擎”,里面的“栈”就是操作数栈。后面会对基于栈的代码执行过程进行更详细的讲解,介绍它与更常见的基于寄存器的执行引擎有哪些差别。

每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接(Dynamic Linking)。我们知道Class文件的常量池中存有大量的符号引用,字节码中的方法调用指令就以常量池里指向方法的符号引用作为参数。这些符号引用一部分会在类加载阶段或者第一次使用的时候就被转化为直接引用,这种转化被称为静态解析。另外一部分将在每一次运行期间都转化为直接引用,这部分就称为动态连接。关于这两个转化过程的具体过程,将在后面的章节中再详细讲解。

当一个方法开始执行后,只有两种方式退出这个方法。第一种方式是执行引擎遇到任意一个方法返回的字节码指令,这时候可能会有返回值传递给上层的方法调用者(调用当前方法的方法称为调用者或者主调方法),方法是否有返回值以及返回值的类型将根据遇到何种方法返回指令来决定,这种退出方法的方式称为“正常调用完成”(Normal Method Invocation Completion)。

另外一种退出方式是在方法执行的过程中遇到了异常,并且这个异常没有在方法体内得到妥善处理。无论是Java虚拟机内部产生的异常,还是代码中使用athrow字节码指令产生的异常,只要在本方法的异常表中没有搜索到匹配的异常处理器,就会导致方法退出,这种退出方法的方式称为“异常调用完成(Abrupt Method Invocation Completion)”。一个方法使用异常完成出口的方式退出,是不会给它的上层调用者提供任何返回值的。

无论采用何种退出方式,在方法退出之后,都必须返回到最初方法被调用时的位置,程序才能继续执行,方法返回时可能需要在栈帧中保存一些信息,用来帮助恢复它的上层主调方法的执行状态。一般来说,方法正常退出时,主调方法的PC计数器的值就可以作为返回地址,栈帧中很可能会保存这个计数器值。而方法异常退出时,返回地址是要通过异常处理器表来确定的,栈帧中就一般不会保存这部分信息。

方法退出的过程实际上等同于把当前栈帧出栈,因此退出时可能执行的操作有: 恢复上层方法的局部变量表和操作数栈,把返回值(如果有的话)压入调用者栈帧的操作数栈中,调整PC计数器的值以指向方法调用指令后面的一条指令等。

posted @ 2020-07-19 10:36  北洛  阅读(223)  评论(0编辑  收藏  举报