cat /tmp/ray/session_latest/logs/dashboard_agent.log
sudo apt install nvidia-utils-510
import ray import os ray.init() @ray.remote def f(x): return x * x futures = [f.remote(i) for i in range(4)] print("task", ray.get(futures)) # [0, 1, 4, 9] @ray.remote class Counter(object): def __init__(self): self.n = 0 def increment(self): self.n += 1 def read(self): return self.n RAY_DEDUP_LOGS=0 counters = [Counter.remote() for i in range(4)] [c.increment.remote() for c in counters] futures = [c.read.remote() for c in counters] print("actor",ray.get(futures)) # [1, 1, 1, 1] ray.shutdown() os._exit(0)
import ray
ds = ray.data.read_csv("local:///home/xiaof/ray/iris.csv")
# ds = ds.map(lambda x: {"target1": x["target"] * 2})
# ds = ds.map(lambda x: {"target2": x["target1"] * 2})
ds.show(limit=1)
from typing import Dict
import numpy as np
# Define a transformation to compute a "petal area" attribute
def transform_batch(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
vec_a = batch["petal.length"]
vec_b = batch["petal.width"]
batch["petal.area"] = vec_a * vec_b
return batch
# Apply the transformation to our dataset
transformed_ds = ds.map_batches(transform_batch)
transformed_ds.show(limit=1)
浙公网安备 33010602011771号