那些年曾经没回答上来的vue面试题
created和mounted的区别
- created:在模板渲染成html前调用,即通常初始化某些属性值,然后再渲染成视图。
- mounted:在模板渲染成html后调用,通常是初始化页面完成后,再对html的dom节点进行一些需要的操作。
vue-cli 工程常用的 npm 命令有哪些
- 下载 node_modules资源包的命令:
npm install
- 启动 vue-cli开发环境的 npm命令:
npm run dev
- vue-cli生成 生产环境部署资源 的- npm命令:
npm run build
- 用于查看 vue-cli生产环境部署资源文件大小的npm命令:
npm run build --report
在浏览器上自动弹出一个 展示
vue-cli工程打包后app.js、manifest.js、vendor.js文件里面所包含代码的页面。可以具此优化vue-cli生产环境部署的静态资源,提升 页面 的加载速度
Vue3.0 和 2.0 的响应式原理区别
Vue3.x 改用 Proxy 替代 Object.defineProperty。因为 Proxy 可以直接监听对象和数组的变化,并且有多达 13 种拦截方法。
相关代码如下
import { mutableHandlers } from "./baseHandlers"; // 代理相关逻辑
import { isObject } from "./util"; // 工具方法
export function reactive(target) {
  // 根据不同参数创建不同响应式对象
  return createReactiveObject(target, mutableHandlers);
}
function createReactiveObject(target, baseHandler) {
  if (!isObject(target)) {
    return target;
  }
  const observed = new Proxy(target, baseHandler);
  return observed;
}
const get = createGetter();
const set = createSetter();
function createGetter() {
  return function get(target, key, receiver) {
    // 对获取的值进行放射
    const res = Reflect.get(target, key, receiver);
    console.log("属性获取", key);
    if (isObject(res)) {
      // 如果获取的值是对象类型,则返回当前对象的代理对象
      return reactive(res);
    }
    return res;
  };
}
function createSetter() {
  return function set(target, key, value, receiver) {
    const oldValue = target[key];
    const hadKey = hasOwn(target, key);
    const result = Reflect.set(target, key, value, receiver);
    if (!hadKey) {
      console.log("属性新增", key, value);
    } else if (hasChanged(value, oldValue)) {
      console.log("属性值被修改", key, value);
    }
    return result;
  };
}
export const mutableHandlers = {
  get, // 当获取属性时调用此方法
  set, // 当修改属性时调用此方法
};
虚拟 DOM 实现原理?
虚拟 DOM 的实现原理主要包括以下 3 部分:
- 用 JavaScript 对象模拟真实 DOM 树,对真实 DOM 进行抽象;
- diff 算法 — 比较两棵虚拟 DOM 树的差异;
- pach 算法 — 将两个虚拟 DOM 对象的差异应用到真正的 DOM 树。
Vue 组件通讯有哪几种方式
- props 和$emit 父组件向子组件传递数据是通过 prop 传递的,子组件传递数据给父组件是通过$emit 触发事件来做到的
- $parent,$children 获取当前组件的父组件和当前组件的子组件
- $attrs 和$listeners A->B->C。Vue 2.4 开始提供了$attrs 和$listeners 来解决这个问题
- 父组件中通过 provide 来提供变量,然后在子组件中通过 inject 来注入变量。(官方不推荐在实际业务中使用,但是写组件库时很常用)
- $refs 获取组件实例
- envetBus 兄弟组件数据传递 这种情况下可以使用事件总线的方式
- vuex 状态管理
那vue中是如何检测数组变化的呢?
数组就是使用 object.defineProperty 重新定义数组的每一项,那能引起数组变化的方法我们都是知道的, pop 、 push 、 shift 、 unshift 、 splice 、 sort 、 reverse 这七种,只要这些方法执行改了数组内容,我就更新内容就好了,是不是很好理解。
- 是用来函数劫持的方式,重写了数组方法,具体呢就是更改了数组的原型,更改成自己的,用户调数组的一些方法的时候,走的就是自己的方法,然后通知视图去更新。
- 数组里每一项可能是对象,那么我就是会对数组的每一项进行观测,(且只有数组里的对象才能进行观测,观测过的也不会进行观测)
vue3:改用 proxy ,可直接监听对象数组的变化。
Proxy 与 Object.defineProperty 优劣对比
Proxy 的优势如下:
- Proxy 可以直接监听对象而非属性;
- Proxy 可以直接监听数组的变化;
- Proxy 有多达 13 种拦截方法,不限于 apply、ownKeys、deleteProperty、has 等等是 Object.defineProperty 不具备的;
- Proxy 返回的是一个新对象,我们可以只操作新的对象达到目的,而 Object.defineProperty 只能遍历对象属性直接修改;
Proxy 作为新标准将受到浏览器厂商重点持续的性能优化,也就是传说中的新标准的性能红利;
Object.defineProperty 的优势如下:
- 兼容性好,支持 IE9,而 Proxy 的存在浏览器兼容性问题,而且无法用 polyfill 磨平,因此 Vue 的作者才声明需要等到下个大版本( 3.0 )才能用 Proxy 重写。
生命周期钩子是如何实现的
Vue 的生命周期钩子核心实现是利用发布订阅模式先把用户传入的的生命周期钩子订阅好(内部采用数组的方式存储)然后在创建组件实例的过程中会一次执行对应的钩子方法(发布)
相关代码如下
export function callHook(vm, hook) {
  // 依次执行生命周期对应的方法
  const handlers = vm.$options[hook];
  if (handlers) {
    for (let i = 0; i < handlers.length; i++) {
      handlers[i].call(vm); //生命周期里面的this指向当前实例
    }
  }
}
// 调用的时候
Vue.prototype._init = function (options) {
  const vm = this;
  vm.$options = mergeOptions(vm.constructor.options, options);
  callHook(vm, "beforeCreate"); //初始化数据之前
  // 初始化状态
  initState(vm);
  callHook(vm, "created"); //初始化数据之后
  if (vm.$options.el) {
    vm.$mount(vm.$options.el);
  }
};
Vue 组件间通信有哪几种方式?
 Vue 组件间通信是面试常考的知识点之一,这题有点类似于开放题,你回答出越多方法当然越加分,表明你对 Vue 掌握的越熟练。Vue 组件间通信只要指以下 3 类通信:父子组件通信、隔代组件通信、兄弟组件通信,下面我们分别介绍每种通信方式且会说明此种方法可适用于哪类组件间通信。
(1)props / $emit  适用 父子组件通信
这种方法是 Vue 组件的基础,相信大部分同学耳闻能详,所以此处就不举例展开介绍。
(2)ref 与 $parent / $children 适用 父子组件通信
- ref:如果在普通的 DOM 元素上使用,引用指向的就是 DOM 元素;如果用在子组件上,引用就指向组件实例
- $parent/- $children:访问父 / 子实例
(3)EventBus ($emit / $on)  适用于 父子、隔代、兄弟组件通信
这种方法通过一个空的 Vue 实例作为中央事件总线(事件中心),用它来触发事件和监听事件,从而实现任何组件间的通信,包括父子、隔代、兄弟组件。
(4)$attrs/$listeners 适用于 隔代组件通信
- $attrs:包含了父作用域中不被 prop 所识别 (且获取) 的特性绑定 ( class 和 style 除外 )。当一个组件没有声明任何 prop 时,这里会包含所有父作用域的绑定 ( class 和 style 除外 ),并且可以通过- v-bind="$attrs"传入内部组件。通常配合 inheritAttrs 选项一起使用。
- $listeners:包含了父作用域中的 (不含 .native 修饰器的) v-on 事件监听器。它可以通过- v-on="$listeners"传入内部组件
(5)provide / inject 适用于 隔代组件通信
祖先组件中通过 provider 来提供变量,然后在子孙组件中通过 inject 来注入变量。 provide / inject API 主要解决了跨级组件间的通信问题,不过它的使用场景,主要是子组件获取上级组件的状态,跨级组件间建立了一种主动提供与依赖注入的关系。
(6)Vuex 适用于 父子、隔代、兄弟组件通信
Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。每一个 Vuex 应用的核心就是 store(仓库)。“store” 基本上就是一个容器,它包含着你的应用中大部分的状态 ( state )。
- Vuex 的状态存储是响应式的。当 Vue 组件从 store 中读取状态的时候,若 store 中的状态发生变化,那么相应的组件也会相应地得到高效更新。
- 改变 store 中的状态的唯一途径就是显式地提交 (commit) mutation。这样使得我们可以方便地跟踪每一个状态的变化。
vue 中使用了哪些设计模式
1.工厂模式 - 传入参数即可创建实例
虚拟 DOM 根据参数的不同返回基础标签的 Vnode 和组件 Vnode
2.单例模式 - 整个程序有且仅有一个实例
vuex 和 vue-router 的插件注册方法 install 判断如果系统存在实例就直接返回掉
3.发布-订阅模式 (vue 事件机制)
4.观察者模式 (响应式数据原理)
5.装饰模式: (@装饰器的用法)
6.策略模式 策略模式指对象有某个行为,但是在不同的场景中,该行为有不同的实现方案-比如选项的合并策略
vue和react的区别
=> 相同点:
1. 数据驱动页面,提供响应式的试图组件
2. 都有virtual DOM,组件化的开发,通过props参数进行父子之间组件传递数据,都实现了webComponents规范
3. 数据流动单向,都支持服务器的渲染SSR
4. 都有支持native的方法,react有React native, vue有wexx
=> 不同点:
 1.数据绑定:Vue实现了双向的数据绑定,react数据流动是单向的
 2.数据渲染:大规模的数据渲染,react更快
 3.使用场景:React配合Redux架构适合大规模多人协作复杂项目,Vue适合小快的项目
 4.开发风格:react推荐做法jsx + inline style把html和css都写在js了
      vue是采用webpack + vue-loader单文件组件格式,html, js, css同一个文件
v-for 为什么要加 key
如果不使用 key,Vue 会使用一种最大限度减少动态元素并且尽可能的尝试就地修改/复用相同类型元素的算法。key 是为 Vue 中 vnode 的唯一标记,通过这个 key,我们的 diff 操作可以更准确、更快速
更准确:因为带 key 就不是就地复用了,在 sameNode 函数 a.key === b.key 对比中可以避免就地复用的情况。所以会更加准确。
更快速:利用 key 的唯一性生成 map 对象来获取对应节点,比遍历方式更快
对Vue SSR的理解
Vue.js是构建客户端应用程序的框架。默认情况下,可以在浏览器中输出Vue组件,进行生成DOM和操作DOM。然而,也可以将同一个组件渲染为服务端的HTML字符串,将它们直接发送到浏览器,最后将这些静态标记"激活"为客户端上完全可交互的应用程序。
SSR也就是服务端渲染,也就是将Vue在客户端把标签渲染成HTML的工作放在服务端完成,然后再把html直接返回给客户端
- 优点 :SSR有着更好的SEO、并且首屏加载速度更快- 因为 SPA页面的内容是通过Ajax获取,而搜索引擎爬取工具并不会等待Ajax异步完成后再抓取页面内容,所以在SPA中是抓取不到页面通过Ajax获取到的内容;而SSR是直接由服务端返回已经渲染好的页面(数据已经包含在页面中),所以搜索引擎爬取工具可以抓取渲染好的页面
- 更快的内容到达时间(首屏加载更快): SPA会等待所有Vue编译后的js文件都下载完成后,才开始进行页面的渲染,文件下载等需要一定的时间等,所以首屏渲染需要一定的时间;SSR直接由服务端渲染好页面直接返回显示,无需等待下载 js 文件及再去渲染等,所以 SSR 有更快的内容到达时间
 
- 因为 
- 缺点 : 开发条件会受到限制,服务器端渲染只支持 beforeCreate和created两个钩子,当我们需要一些外部扩展库时需要特殊处理,服务端渲染应用程序也需要处于Node.js的运行环境。服务器会有更大的负载需求- 在 Node.js 中渲染完整的应用程序,显然会比仅仅提供静态文件的 server更加大量占用CPU资源 (CPU-intensive - CPU 密集),因此如果你预料在高流量环境 ( high traffic ) 下使用,请准备相应的服务器负载,并明智地采用缓存策略
 
- 在 Node.js 中渲染完整的应用程序,显然会比仅仅提供静态文件的 
其基本实现原理
- app.js作为客户端与服务端的公用入口,导出- Vue根实例,供客户端- entry与服务端- entry使用。客户端- entry主要作用挂载到- DOM上,服务端- entry除了创建和返回实例,还进行路由匹配与数据预获取。
- webpack为客服端打包一个- Client Bundle,为服务端打包一个- Server Bundle。
- 服务器接收请求时,会根据 url,加载相应组件,获取和解析异步数据,创建一个读取Server Bundle的BundleRenderer,然后生成html发送给客户端。
- 客户端混合,客户端收到从服务端传来的 DOM与自己的生成的 DOM 进行对比,把不相同的DOM激活,使其可以能够响应后续变化,这个过程称为客户端激活 。为确保混合成功,客户端与服务器端需要共享同一套数据。在服务端,可以在渲染之前获取数据,填充到stroe里,这样,在客户端挂载到DOM之前,可以直接从store里取数据。首屏的动态数据通过window.__INITIAL_STATE__发送到客户端
Vue SSR的实现,主要就是把Vue的组件输出成一个完整HTML,vue-server-renderer就是干这事的
Vue SSR需要做的事多点(输出完整 HTML),除了complier -> vnode,还需如数据获取填充至 HTML、客户端混合(hydration)、缓存等等。相比于其他模板引擎(ejs, jade 等),最终要实现的目的是一样的,性能上可能要差点
Vue.extend 作用和原理
官方解释:Vue.extend 使用基础 Vue 构造器,创建一个“子类”。参数是一个包含组件选项的对象。
其实就是一个子类构造器 是 Vue 组件的核心 api 实现思路就是使用原型继承的方法返回了 Vue 的子类 并且利用 mergeOptions 把传入组件的 options 和父类的 options 进行了合并
Vue.js的template编译
简而言之,就是先转化成AST树,再得到的render函数返回VNode(Vue的虚拟DOM节点),详细步骤如下:
首先,通过compile编译器把template编译成AST语法树(abstract syntax tree 即 源代码的抽象语法结构的树状表现形式),compile是createCompiler的返回值,createCompiler是用以创建编译器的。另外compile还负责合并option。
然后,AST会经过generate(将AST语法树转化成render funtion字符串的过程)得到render函数,render的返回值是VNode,VNode是Vue的虚拟DOM节点,里面有(标签名、子节点、文本等等)
子组件可以直接改变父组件的数据么,说明原因
这是一个实践知识点,组件化开发过程中有个单项数据流原则,不在子组件中修改父组件是个常识问题
思路
- 讲讲单项数据流原则,表明为何不能这么做
- 举几个常见场景的例子说说解决方案
- 结合实践讲讲如果需要修改父组件状态应该如何做
回答范例
- 所有的 prop都使得其父子之间形成了一个单向下行绑定:父级prop的更新会向下流动到子组件中,但是反过来则不行。这样会防止从子组件意外变更父级组件的状态,从而导致你的应用的数据流向难以理解。另外,每次父级组件发生变更时,子组件中所有的prop都将会刷新为最新的值。这意味着你不应该在一个子组件内部改变prop。如果你这样做了,Vue会在浏览器控制台中发出警告
const props = defineProps(['foo'])
// ❌ 下面行为会被警告, props是只读的!
props.foo = 'bar'
- 实际开发过程中有两个场景会想要修改一个属性:
这个 prop 用来传递一个初始值;这个子组件接下来希望将其作为一个本地的 prop 数据来使用。 在这种情况下,最好定义一个本地的 data,并将这个 prop 用作其初始值:
const props = defineProps(['initialCounter'])
const counter = ref(props.initialCounter)
这个 prop 以一种原始的值传入且需要进行转换。 在这种情况下,最好使用这个 prop 的值来定义一个计算属性:
const props = defineProps(['size'])
// prop变化,计算属性自动更新
const normalizedSize = computed(() => props.size.trim().toLowerCase())
- 实践中如果确实想要改变父组件属性应该emit一个事件让父组件去做这个变更。注意虽然我们不能直接修改一个传入的对象或者数组类型的prop,但是我们还是能够直接改内嵌的对象或属性
vue3.0 特性你有什么了解的吗?
Vue 3.0 正走在发布的路上,Vue 3.0 的目标是让 Vue 核心变得更小、更快、更强大,因此 Vue 3.0 增加以下这些新特性:
(1)监测机制的改变
3.0 将带来基于代理 Proxy 的 observer 实现,提供全语言覆盖的反应性跟踪。这消除了 Vue 2 当中基于 Object.defineProperty 的实现所存在的很多限制:
- 只能监测属性,不能监测对象
- 检测属性的添加和删除;
- 检测数组索引和长度的变更;
- 支持 Map、Set、WeakMap 和 WeakSet。
新的 observer 还提供了以下特性:
- 用于创建 observable 的公开 API。这为中小规模场景提供了简单轻量级的跨组件状态管理解决方案。
- 默认采用惰性观察。在 2.x 中,不管反应式数据有多大,都会在启动时被观察到。如果你的数据集很大,这可能会在应用启动时带来明显的开销。在 3.x 中,只观察用于渲染应用程序最初可见部分的数据。
- 更精确的变更通知。在 2.x 中,通过 Vue.set 强制添加新属性将导致依赖于该对象的 watcher 收到变更通知。在 3.x 中,只有依赖于特定属性的 watcher 才会收到通知。
- 不可变的 observable:我们可以创建值的“不可变”版本(即使是嵌套属性),除非系统在内部暂时将其“解禁”。这个机制可用于冻结 prop 传递或 Vuex 状态树以外的变化。
- 更好的调试功能:我们可以使用新的 renderTracked 和 renderTriggered 钩子精确地跟踪组件在什么时候以及为什么重新渲染。
(2)模板
模板方面没有大的变更,只改了作用域插槽,2.x 的机制导致作用域插槽变了,父组件会重新渲染,而 3.0 把作用域插槽改成了函数的方式,这样只会影响子组件的重新渲染,提升了渲染的性能。
同时,对于 render 函数的方面,vue3.0 也会进行一系列更改来方便习惯直接使用 api 来生成 vdom 。
(3)对象式的组件声明方式
vue2.x 中的组件是通过声明的方式传入一系列 option,和 TypeScript 的结合需要通过一些装饰器的方式来做,虽然能实现功能,但是比较麻烦。3.0 修改了组件的声明方式,改成了类式的写法,这样使得和 TypeScript 的结合变得很容易。
此外,vue 的源码也改用了 TypeScript 来写。其实当代码的功能复杂之后,必须有一个静态类型系统来做一些辅助管理。现在 vue3.0 也全面改用 TypeScript 来重写了,更是使得对外暴露的 api 更容易结合 TypeScript。静态类型系统对于复杂代码的维护确实很有必要。
(4)其它方面的更改
vue3.0 的改变是全面的,上面只涉及到主要的 3 个方面,还有一些其他的更改:
- 支持自定义渲染器,从而使得 weex 可以通过自定义渲染器的方式来扩展,而不是直接 fork 源码来改的方式。
- 支持 Fragment(多个根节点)和 Protal(在 dom 其他部分渲染组建内容)组件,针对一些特殊的场景做了处理。
- 基于 treeshaking 优化,提供了更多的内置功能。
diff算法
时间复杂度: 个树的完全 diff 算法是一个时间复杂度为 O(n*3) ,vue进行优化转化成 O(n) 。
理解:
- 最小量更新,key很重要。这个可以是这个节点的唯一标识,告诉diff算法,在更改前后它们是同一个DOM节点- 扩展v-for为什么要有key,没有key会暴力复用,举例子的话随便说一个比如移动节点或者增加节点(修改DOM),加key只会移动减少操作DOM。
 
- 扩展
- 只有是同一个虚拟节点才会进行精细化比较,否则就是暴力删除旧的,插入新的。
- 只进行同层比较,不会进行跨层比较。
diff算法的优化策略:四种命中查找,四个指针
- 旧前与新前(先比开头,后插入和删除节点的这种情况)
- 旧后与新后(比结尾,前插入或删除的情况)
- 旧前与新后(头与尾比,此种发生了,涉及移动节点,那么新前指向的节点,移动到旧后之后)
- 旧后与新前(尾与头比,此种发生了,涉及移动节点,那么新前指向的节点,移动到旧前之前)
Vue的diff算法详细分析
1. 是什么
diff 算法是一种通过同层的树节点进行比较的高效算法
其有两个特点:
- 比较只会在同层级进行, 不会跨层级比较
- 在diff比较的过程中,循环从两边向中间比较
diff 算法在很多场景下都有应用,在 vue 中,作用于虚拟 dom 渲染成真实 dom 的新旧 VNode 节点比较
2. 比较方式
diff整体策略为:深度优先,同层比较
- 比较只会在同层级进行, 不会跨层级比较

- 比较的过程中,循环从两边向中间收拢

下面举个vue通过diff算法更新的例子:
新旧VNode节点如下图所示:

第一次循环后,发现旧节点D与新节点D相同,直接复用旧节点D作为diff后的第一个真实节点,同时旧节点endIndex移动到C,新节点的 startIndex 移动到了 C

第二次循环后,同样是旧节点的末尾和新节点的开头(都是 C)相同,同理,diff 后创建了 C 的真实节点插入到第一次创建的 D 节点后面。同时旧节点的 endIndex 移动到了 B,新节点的 startIndex 移动到了 E

第三次循环中,发现E没有找到,这时候只能直接创建新的真实节点 E,插入到第二次创建的 C 节点之后。同时新节点的 startIndex 移动到了 A。旧节点的 startIndex 和 endIndex 都保持不动

第四次循环中,发现了新旧节点的开头(都是 A)相同,于是 diff 后创建了 A 的真实节点,插入到前一次创建的 E 节点后面。同时旧节点的 startIndex 移动到了 B,新节点的startIndex 移动到了 B

第五次循环中,情形同第四次循环一样,因此 diff 后创建了 B 真实节点 插入到前一次创建的 A 节点后面。同时旧节点的 startIndex移动到了 C,新节点的 startIndex 移动到了 F

新节点的 startIndex 已经大于 endIndex 了,需要创建 newStartIdx 和 newEndIdx 之间的所有节点,也就是节点F,直接创建 F 节点对应的真实节点放到 B 节点后面

3. 原理分析
当数据发生改变时,set方法会调用Dep.notify通知所有订阅者Watcher,订阅者就会调用patch给真实的DOM打补丁,更新相应的视图
源码位置:src/core/vdom/patch.js
function patch(oldVnode, vnode, hydrating, removeOnly) {
    if (isUndef(vnode)) { // 没有新节点,直接执行destory钩子函数
        if (isDef(oldVnode)) invokeDestroyHook(oldVnode)
        return
    }
    let isInitialPatch = false
    const insertedVnodeQueue = []
    if (isUndef(oldVnode)) {
        isInitialPatch = true
        createElm(vnode, insertedVnodeQueue) // 没有旧节点,直接用新节点生成dom元素
    } else {
        const isRealElement = isDef(oldVnode.nodeType)
        if (!isRealElement && sameVnode(oldVnode, vnode)) {
            // 判断旧节点和新节点自身一样,一致执行patchVnode
            patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly)
        } else {
            // 否则直接销毁及旧节点,根据新节点生成dom元素
            if (isRealElement) {
                if (oldVnode.nodeType === 1 && oldVnode.hasAttribute(SSR_ATTR)) {
                    oldVnode.removeAttribute(SSR_ATTR)
                    hydrating = true
                }
                if (isTrue(hydrating)) {
                    if (hydrate(oldVnode, vnode, insertedVnodeQueue)) {
                        invokeInsertHook(vnode, insertedVnodeQueue, true)
                        return oldVnode
                    }
                }
                oldVnode = emptyNodeAt(oldVnode)
            }
            return vnode.elm
        }
    }
}
patch函数前两个参数位为oldVnode 和 Vnode ,分别代表新的节点和之前的旧节点,主要做了四个判断:
- 没有新节点,直接触发旧节点的destory钩子
- 没有旧节点,说明是页面刚开始初始化的时候,此时,根本不需要比较了,直接全是新建,所以只调用 createElm
- 旧节点和新节点自身一样,通过 sameVnode判断节点是否一样,一样时,直接调用patchVnode去处理这两个节点
- 旧节点和新节点自身不一样,当两个节点不一样的时候,直接创建新节点,删除旧节点
下面主要讲的是patchVnode部分
function patchVnode (oldVnode, vnode, insertedVnodeQueue, removeOnly) {
    // 如果新旧节点一致,什么都不做
    if (oldVnode === vnode) {
      return
    }
    // 让vnode.el引用到现在的真实dom,当el修改时,vnode.el会同步变化
    const elm = vnode.elm = oldVnode.elm
    // 异步占位符
    if (isTrue(oldVnode.isAsyncPlaceholder)) {
      if (isDef(vnode.asyncFactory.resolved)) {
        hydrate(oldVnode.elm, vnode, insertedVnodeQueue)
      } else {
        vnode.isAsyncPlaceholder = true
      }
      return
    }
    // 如果新旧都是静态节点,并且具有相同的key
    // 当vnode是克隆节点或是v-once指令控制的节点时,只需要把oldVnode.elm和oldVnode.child都复制到vnode上
    // 也不用再有其他操作
    if (isTrue(vnode.isStatic) &&
      isTrue(oldVnode.isStatic) &&
      vnode.key === oldVnode.key &&
      (isTrue(vnode.isCloned) || isTrue(vnode.isOnce))
    ) {
      vnode.componentInstance = oldVnode.componentInstance
      return
    }
    let i
    const data = vnode.data
    if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
      i(oldVnode, vnode)
    }
    const oldCh = oldVnode.children
    const ch = vnode.children
    if (isDef(data) && isPatchable(vnode)) {
      for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
      if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
    }
    // 如果vnode不是文本节点或者注释节点
    if (isUndef(vnode.text)) {
      // 并且都有子节点
      if (isDef(oldCh) && isDef(ch)) {
        // 并且子节点不完全一致,则调用updateChildren
        if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
        // 如果只有新的vnode有子节点
      } else if (isDef(ch)) {
        if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
        // elm已经引用了老的dom节点,在老的dom节点上添加子节点
        addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
        // 如果新vnode没有子节点,而vnode有子节点,直接删除老的oldCh
      } else if (isDef(oldCh)) {
        removeVnodes(elm, oldCh, 0, oldCh.length - 1)
        // 如果老节点是文本节点
      } else if (isDef(oldVnode.text)) {
        nodeOps.setTextContent(elm, '')
      }
      // 如果新vnode和老vnode是文本节点或注释节点
      // 但是vnode.text != oldVnode.text时,只需要更新vnode.elm的文本内容就可以
    } else if (oldVnode.text !== vnode.text) {
      nodeOps.setTextContent(elm, vnode.text)
    }
    if (isDef(data)) {
      if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
    }
  }
patchVnode主要做了几个判断:
- 新节点是否是文本节点,如果是,则直接更新dom的文本内容为新节点的文本内容
- 新节点和旧节点如果都有子节点,则处理比较更新子节点
- 只有新节点有子节点,旧节点没有,那么不用比较了,所有节点都是全新的,所以直接全部新建就好了,新建是指创建出所有新DOM,并且添加进父节点
- 只有旧节点有子节点而新节点没有,说明更新后的页面,旧节点全部都不见了,那么要做的,就是把所有的旧节点删除,也就是直接把DOM删除
子节点不完全一致,则调用updateChildren
function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) {
    let oldStartIdx = 0 // 旧头索引
    let newStartIdx = 0 // 新头索引
    let oldEndIdx = oldCh.length - 1 // 旧尾索引
    let newEndIdx = newCh.length - 1 // 新尾索引
    let oldStartVnode = oldCh[0] // oldVnode的第一个child
    let oldEndVnode = oldCh[oldEndIdx] // oldVnode的最后一个child
    let newStartVnode = newCh[0] // newVnode的第一个child
    let newEndVnode = newCh[newEndIdx] // newVnode的最后一个child
    let oldKeyToIdx, idxInOld, vnodeToMove, refElm
    // removeOnly is a special flag used only by <transition-group>
    // to ensure removed elements stay in correct relative positions
    // during leaving transitions
    const canMove = !removeOnly
    // 如果oldStartVnode和oldEndVnode重合,并且新的也都重合了,证明diff完了,循环结束
    while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
      // 如果oldVnode的第一个child不存在
      if (isUndef(oldStartVnode)) {
        // oldStart索引右移
        oldStartVnode = oldCh[++oldStartIdx] // Vnode has been moved left
      // 如果oldVnode的最后一个child不存在
      } else if (isUndef(oldEndVnode)) {
        // oldEnd索引左移
        oldEndVnode = oldCh[--oldEndIdx]
      // oldStartVnode和newStartVnode是同一个节点
      } else if (sameVnode(oldStartVnode, newStartVnode)) {
        // patch oldStartVnode和newStartVnode, 索引左移,继续循环
        patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue)
        oldStartVnode = oldCh[++oldStartIdx]
        newStartVnode = newCh[++newStartIdx]
      // oldEndVnode和newEndVnode是同一个节点
      } else if (sameVnode(oldEndVnode, newEndVnode)) {
        // patch oldEndVnode和newEndVnode,索引右移,继续循环
        patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue)
        oldEndVnode = oldCh[--oldEndIdx]
        newEndVnode = newCh[--newEndIdx]
      // oldStartVnode和newEndVnode是同一个节点
      } else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right
        // patch oldStartVnode和newEndVnode
        patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue)
        // 如果removeOnly是false,则将oldStartVnode.eml移动到oldEndVnode.elm之后
        canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm))
        // oldStart索引右移,newEnd索引左移
        oldStartVnode = oldCh[++oldStartIdx]
        newEndVnode = newCh[--newEndIdx]
      // 如果oldEndVnode和newStartVnode是同一个节点
      } else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left
        // patch oldEndVnode和newStartVnode
        patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue)
        // 如果removeOnly是false,则将oldEndVnode.elm移动到oldStartVnode.elm之前
        canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm)
        // oldEnd索引左移,newStart索引右移
        oldEndVnode = oldCh[--oldEndIdx]
        newStartVnode = newCh[++newStartIdx]
      // 如果都不匹配
      } else {
        if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
        // 尝试在oldChildren中寻找和newStartVnode的具有相同的key的Vnode
        idxInOld = isDef(newStartVnode.key)
          ? oldKeyToIdx[newStartVnode.key]
          : findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx)
        // 如果未找到,说明newStartVnode是一个新的节点
        if (isUndef(idxInOld)) { // New element
          // 创建一个新Vnode
          createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
        // 如果找到了和newStartVnodej具有相同的key的Vnode,叫vnodeToMove
        } else {
          vnodeToMove = oldCh[idxInOld]
          /* istanbul ignore if */
          if (process.env.NODE_ENV !== 'production' && !vnodeToMove) {
            warn(
              'It seems there are duplicate keys that is causing an update error. ' +
              'Make sure each v-for item has a unique key.'
            )
          }
          // 比较两个具有相同的key的新节点是否是同一个节点
          //不设key,newCh和oldCh只会进行头尾两端的相互比较,设key后,除了头尾两端的比较外,还会从用key生成的对象oldKeyToIdx中查找匹配的节点,所以为节点设置key可以更高效的利用dom。
          if (sameVnode(vnodeToMove, newStartVnode)) {
            // patch vnodeToMove和newStartVnode
            patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue)
            // 清除
            oldCh[idxInOld] = undefined
            // 如果removeOnly是false,则将找到的和newStartVnodej具有相同的key的Vnode,叫vnodeToMove.elm
            // 移动到oldStartVnode.elm之前
            canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm)
          // 如果key相同,但是节点不相同,则创建一个新的节点
          } else {
            // same key but different element. treat as new element
            createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm)
          }
        }
        // 右移
        newStartVnode = newCh[++newStartIdx]
      }
    }
while循环主要处理了以下五种情景:
- 当新老 VNode节点的start相同时,直接patchVnode,同时新老VNode节点的开始索引都加 1
- 当新老 VNode节点的end相同时,同样直接patchVnode,同时新老VNode节点的结束索引都减 1
- 当老 VNode节点的start和新VNode节点的end相同时,这时候在patchVnode后,还需要将当前真实dom节点移动到oldEndVnode的后面,同时老VNode节点开始索引加 1,新VNode节点的结束索引减 1
- 当老 VNode节点的end和新VNode节点的start相同时,这时候在patchVnode后,还需要将当前真实dom节点移动到oldStartVnode的前面,同时老VNode节点结束索引减 1,新VNode节点的开始索引加 1
- 如果都不满足以上四种情形,那说明没有相同的节点可以复用,则会分为以下两种情况:
- 从旧的 VNode为key值,对应index序列为value值的哈希表中找到与newStartVnode一致key的旧的VNode节点,再进行patchVnode,同时将这个真实dom移动到oldStartVnode对应的真实dom的前面
- 调用 createElm创建一个新的dom节点放到当前newStartIdx的位置
 
- 从旧的 
小结
- 当数据发生改变时,订阅者watcher就会调用patch给真实的DOM打补丁
- 通过isSameVnode进行判断,相同则调用patchVnode方法
- patchVnode做了以下操作:- 找到对应的真实dom,称为el
- 如果都有都有文本节点且不相等,将el文本节点设置为Vnode的文本节点
- 如果oldVnode有子节点而VNode没有,则删除el子节点
- 如果oldVnode没有子节点而VNode有,则将VNode的子节点真实化后添加到el
- 如果两者都有子节点,则执行updateChildren函数比较子节点
 
- 找到对应的真实
- updateChildren主要做了以下操作:- 设置新旧VNode的头尾指针
- 新旧头尾指针进行比较,循环向中间靠拢,根据情况调用patchVnode进行patch重复流程、调用createElem创建一个新节点,从哈希表寻找key一致的VNode节点再分情况操作
 
- 设置新旧
为什么在 Vue3.0 采用了 Proxy,抛弃了 Object.defineProperty?
Object.defineProperty 本身有一定的监控到数组下标变化的能力,但是在 Vue 中,从性能/体验的性价比考虑,尤大大就弃用了这个特性。为了解决这个问题,经过 vue 内部处理后可以使用以下几种方法来监听数组
push();
pop();
shift();
unshift();
splice();
sort();
reverse();
由于只针对了以上 7 种方法进行了 hack 处理,所以其他数组的属性也是检测不到的,还是具有一定的局限性。
Object.defineProperty 只能劫持对象的属性,因此我们需要对每个对象的每个属性进行遍历。Vue 2.x 里,是通过 递归 + 遍历 data 对象来实现对数据的监控的,如果属性值也是对象那么需要深度遍历,显然如果能劫持一个完整的对象是才是更好的选择。
Proxy 可以劫持整个对象,并返回一个新的对象。Proxy 不仅可以代理对象,还可以代理数组。还可以代理动态增加的属性。
 
                    
                
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号