Local analytic solution of a functional function in multidimensional space

关于高维函数方程解析解的一个重要结果

我们研究下面这个(复变量)方程的局部解析解:

\[\begin{equation}\tag{eq-smajdor} \phi(z)=h(z,\phi(f(z))) \end{equation} \]

其中

\[f:\mathbb{C}^n\to \mathbb{C}^n,~~~~h:\mathbb{C}^n\times \mathbb{C}^m\to \mathbb{C}^m \]

定义在\(z=0\)\((z,w)=(0,0)\)的某邻域内, 且\(\phi:\mathbb{C}^n\to \mathbb{C}^m\)是未知函数. 定义\(\mathbb{C}^n\)\(\mathbb{C}^m\)中向量的范数: \(z=(z_1,\cdots,z_n),w=(w^1,\cdots,w^m)\),

\[\begin{equation}\tag{eq-5-1} \|z\|=\left(\sum_{i=1}^{n}|z_i|\right)^{1/2},~~~ \|w\|_0=\left(\sum_{k=1}^{m}|w^k|^2\right)^{1/2} \end{equation} \]

并对于\(U=[u_i^j]_{n\times n},V=[v_l^k]_{m\times m}\), 定义

\[\begin{equation}\tag{eq-5-2} \|U\|_*=\sup_{|t|=1}\left(\sum_{i=1}^{n}\left|\sum_{j=1}^{n}u_i^jt_j\right|^2\right)^{1/2},~~~ \ \|V\|^*=\left(\sum_{k,l=1}^{m}|v_l^k|^2\right)^{1/2}. \end{equation} \]

注记: 为了与后面的保持一致, 在这种写法\([u_i^j]\)中, 规定下标\(i\)表示列指标, 上标\(j\)表示行指标. 那么

\[\|U\|_*=\sup_{|t|=1}\|U^Tt\|. \]

假设

  • (I) \(f(z)=(f_1(z_1,\cdots,f_n(z)),\cdots, f_n(z_1,\cdots,f_n(z)))\)\(|z|\le r_0\)解析且在此集合中(即\(|z|\le r_0\))有展开式

\[\begin{equation}\tag{eq-5-3} f_i(z_1,\cdots,f_n(z))=\sum_{\mu=1}^{\infty}\sum_{j_1,\cdots,j_\mu=1}^{n} b^i_{j_1\cdots j_\mu}z_{j_1}\cdots z_{j_\mu},~~~~i=1,\cdots,n. \end{equation} \]

  • (II)\(f\)\(z=0\)处的Jacobi矩阵\(B=[b_i^j]_{n\times n}\)满足

\[\begin{equation}\tag{eq-5-4} \|B\|_*<1. \end{equation} \]

  • (III) \(h(z,w)=(h^1(z_1,\cdots,z_n;w^1,\cdots, w^m),\cdots,h^m(z_1,\cdots,z_n;w^1,\cdots,w^m))\)
    \(|z|\le r_0\),\(\|w\|\le R_0\)解析且有展开式

\[\begin{equation}\tag{eq-5-5} h^k(z_1,\cdots,z_n;w^1,\cdots,w^m)= \sum_{\substack{\mu,\nu=0 \\ \mu+\nu\ge 1}}^{\infty} \sum_{\substack{j_i=0 \\ 1\le i\le \mu}}^{n} \sum_{\substack{l_t=1 \\ 1\le t\le \nu}}^{n} a_{j_1\cdots j_\mu;l_1\cdots l_\nu}^k z_{j_1}\cdots z_{j_\mu}w^{l_1}\cdots w^{l_\nu},~~~~k=1,\cdots,m. \end{equation} \]

方程{eq-smajdor}在原点的某邻域内有一个解析解\(\phi(z)\)(\(\phi(0)=0\))的一个必要条件是它在原点的某邻域内有形式级数解

\[\begin{equation}\tag{eq-5-6} \phi(z)=(\phi^1(z_1,\cdots,z_n),\cdots,\phi^m(z_1,\cdots,z_n)), \end{equation} \]

其中

\[\begin{equation}\tag{eq-5-7} \phi^k(z_1,\cdots,z_n)=\sum_{\mu=1}^{\infty}\sum_{j_1,\cdots,j_\mu=1}^{n}c_{j_1\cdots j_\mu}^k z_{j_1}\cdots z_{j_\mu},~~~k=1,\cdots,m. \end{equation} \]

通过对比系数我们得到

\[\begin{equation}\tag{eq-5-8} \begin{aligned} c_i^k=&a_{i,0}^k+\sum_{l=1}^{m}\sum_{j=1}^{n}a_{0,l}^k c_j^l b_i^j \\ \cdots &\cdots \cdots\\ c_{i_1,\cdots,i_q}^k=&F_{i_1,\cdots,i_q}^k+\sum_{l=1}^{m}\sum_{j_1,\cdots,j_q=1}^{n} a_{0,l}^k c_{j_1,\cdots,j_q}^l b_{i_1}^{j_1}\cdots b_{i_q}^{j_q}, \end{aligned} \end{equation} \]

对于 \(~k=1,\cdots,m; ~q=2,3,\cdots;i_1,\cdots,i_q=1,\cdots,n;\)其中\(F^k_{i_1,\cdots,i_q}\)\(c^l_{j_1,\cdots,j_s},l=1,\cdots,i;j_1,\cdots,j_s=1,\cdots,n;s=1\cdots,q-1\) 以及 \(f\)\(h\)的展开式中的系数(这表明\(c_{i_1,\cdots,i_q}^k\)被递归的确定). 进而, 利用混合偏导相等的性质, 我们可以得到

\[\begin{equation}\tag{eq-5-9} c_{i_{p_1},\cdots,i_{p_q}}^k=c_{i_{1},\cdots,i_{q}}^k,~~~k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n; q=1,2,\cdots \end{equation} \]

其中\((p_1,\cdots,p_q)\)\((1,\cdots,q)\)的任一置换.

{{eq-5-8} 的推导过程如下:
首先把各个函数的展开式代入{eq-smajdor}, 我们有

\[\begin{equation}\tag{eq-5-10} \begin{aligned} \phi^k(z_1,\cdots,z_n) =\sum_{\mu=1}^{\infty}\sum_{j_1,\cdots,j_\mu=1}^{n}c_{j_1\cdots j_\mu}^k z_{j_1}\cdots z_{j_\mu},\\ \end{aligned} \end{equation}\ \]

\[\begin{equation}\tag{eq-5-11} \begin{aligned} &h^k(z,\phi(f(z)))h^k(z_1,\cdots,z_n;\phi^1(f_1(z),\cdots,f_n(z)),\cdots,\phi^m(f_1(z),\cdots,f_n(z)))\\ =& \sum_{\substack{\mu,\nu=0 \\ \mu+\nu\ge 1}}^{\infty} \sum_{j_1\cdots j_\mu=1}^{n} \sum_{l_1\cdots l_\nu=1}^{m}a_{j_1\cdots j_\mu;l_1\cdots l_\nu}^k z_{j_1}\cdots z_{j_\mu} \cdot \phi^{l_1}(f_{j_1}(z),\cdots,f_{j_\mu}(z))\cdots \phi^{l_\nu}(f_{j_1}(z),\cdots,f_{j_\mu}(z))\\ =& \sum_{\substack{\mu,\nu=0 \\ \mu+\nu\ge 1}}^{\infty} \sum_{j_1 \cdots j_\mu=1}^{n} \sum_{l_1 \cdots l_\nu=1}^{m}a_{j_1\cdots j_\mu;l_1\cdots l_\nu}^k z_{j_1}\cdots z_{j_\mu} \cdot \\ &\cdot \left[\sum_{\mu=1}^{\infty}\sum_{j_1\cdots j_\mu=1}^{n}c_{j_1\cdots j_\mu}^{l_1}f_{j_1}(z) \cdots f_{j_\mu}(z)\right] \cdots \left[\sum_{\mu=1}^{\infty}\sum_{j_1\cdots j_\mu=1}^{n}c_{j_1\cdots j_\mu}^{l_\nu}f_{j_1}(z) \cdots f_{j_\mu}(z)\right]\\ =& \sum_{\substack{\mu,\nu=0 \\ \mu+\nu\ge 1}}^{\infty} \sum_{j_1 \cdots j_\mu=1}^{n} \sum_{l_1 \cdots l_\nu=1}^{m}a_{j_1\cdots j_\mu;l_1\cdots l_\nu}^k z_{j_1}\cdots z_{j_\mu} \cdot \\ &\cdot \left\{\sum_{\mu=1}^{\infty}\sum_{j_1\cdots j_\mu=1}^{n}c_{j_1\cdots j_\mu}^{l_1} \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_1}z_{r_1}\cdots z_{r_\mu}\right] \cdots \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_\mu}z_{r_1}\cdots z_{r_\mu}\right] \right\}\\ & \cdots \cdots \cdots\\ &\left\{\sum_{\mu=1}^{\infty}\sum_{j_1\cdots j_\mu=1}^{n}c_{j_1\cdots j_\mu}^{l_\nu} \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_1}z_{r_1} \cdots z_{r_\mu}\right] \cdots \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_\mu}z_{r_1} \cdots z_{r_\mu}\right] \right\}\\ \end{aligned} \end{equation} \]

想要从这个非常复杂的等式中看出第\(k\)个分量中的项\(z_{j_1}z_{j_2}\cdots z_{j_p}\)的系数的对应关系,
观键在于处理好\(\sum\)({\color{red}要逐层的拨开\(\sum\)}).

现在, 我们首先观察{eq-5-10}和{eq-5-11}中的一次项中的\(z_i\)的次数:
先找\(\mu=1,\nu=0\)的项, 有

\[a_{i,0}^k \]

再找\(\mu=0,\nu=1\)的项,
\((\mu,\nu)=(0,1)\)去掉了第一个\(\sum\),
\(\mu=0\)去掉了第二个\(\sum\),
因为是一次的, 所以后面的\(\{\cdot\}\)只能存在一个,
第三\(\sum\)写为\(\sum_{l=1}^{n}\), 有

\[\sum_{l=1}^{n}a_{0,l}^k \]

再从

\[\left\{\sum_{\mu=1}^{\infty}\sum_{j_1\cdots j_\mu=1}^{n}c_{j_1\cdots j_\mu}^{l_\nu} \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_1}z_{r_1} \cdots z_{r_\mu}\right] \cdots \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_\mu}z_{r_1} \cdots z_{r_\mu}\right] \right\} \]

中去掉第一个\(\sum\)(因为要找一次项), 第二个\(\sum\)改为\(\sum_{j=1}^{n}\), 得到

\[\sum_{j=1}^{n}c_j^l \]

下面的这些\([\cdot]\)

\[\left[\sum_{\mu=1}^{\infty} \sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_1}z_{r_1} \cdots z_{r_\mu}\right] \cdots\left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_\mu}z_{r_1} \cdots z_{r_\mu}\right] \]

只有一个存在

\[\left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j}z_{r_1} \cdots z_{r_\mu}\right] \]

要找\(z_i\)的系数(\(\mu=1\)去掉了第一个\(\sum\)), 于是

\[b^j_i. \]

综上得到

\[c^k_i=a_{i,0}^k+\sum_{l=1}^{n}a_{0,l}^k\left(\sum_{j=1}^{n}c_j^l\right)b^j_i =a_{i,0}^k+\sum_{l=1}^{n}\sum_{j=1}^{n}a_{0,l}^kc_j^l b^j_i, \]

这就是{eq-5-8}的第一个等式.

我们继续推导{eq-5-8}的第二个等式(通过对比\(z_{i_1}z_{i_2}\cdots z_{i_p}\)的系数来完成).
从{eq-5-11}中找\(z_{i_1}z_{i_2}\cdots z_{i_p}\)的系数:
我们把所有\(c_{j_1\cdots j_\mu}^{k}\)的下标\(\mu<q\)的项都全部整合在一起, 记为\(F_{i_1\cdots i_q}^k\),
只看能出现\(c_{j_1\cdots j_q}^{k}\)的项.
{eq-5-11}最后一个等号后面的第一行中\(\mu=0,\nu=1\),
去掉{eq-5-11}最后一个等号后面的第一和第二个\(\sum\),第三个\(\sum\)写为\(\sum_{l=1}^{m}\),

\[\sum_{l=1}^{m}a_{0,l}^k \]

后面的\(\{\cdot\}\)中只有一个:

\[\left\{\sum_{\mu=1}^{\infty}\sum_{j_1\cdots j_\mu=1}^{n}c_{j_1\cdots j_\mu}^{l} \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_1}z_{r_1} \cdots z_{r_\mu}\right] \cdots \left[\sum_{\mu=1}^{\infty}\sum_{r_1\cdots r_\mu=1}^{n}b_{r_1\cdots r_\mu}^{j_\mu}z_{r_1} \cdots z_{r_\mu}\right] \right\} \]

要从它中找\(z_{i_1}z_{i_2}\cdots z_{i_p}\)的系数, \(\mu=p\)去掉第一个\(\sum\), 上式变为

\[\left\{\sum_{j_1\cdots j_p=1}^{n}c_{j_1\cdots j_p}^{l} \left[\sum_{r_1\cdots r_p=1}^{n}b_{r_1\cdots r_p}^{j_1}z_{r_1} \cdots z_{r_p}\right] \cdots \left[\sum_{r_1\cdots r_p=1}^{n}b_{r_1\cdots r_p}^{j_p}z_{r_1} \cdots z_{r_p}\right] \right\} \]

由于\(j_s\ge1\), 所以只能从每个\([\cdot]\)中找到一个\(z_{i_s}\),
设从第\(r\)\([\cdot]\)中找到\(z_{i_{s_r}}\), 于是

\[\sum_{j_1\cdots j_p=1}^{n}c_{j_1\cdots j_p}^{l}b_{i_{s_1}}^{j_1}\cdots b_{i_{s_p}}^{j_p} \]

其中\((i_{s_1},\cdots,i_{s_p})\)\((1,\cdots,p)\)的一个置换.
因为\(j_1,\cdots,j_p\)每一个从\(1,\cdots,n\)是"遍历的", 于是上式可以写为

\[\sum_{j_1\cdots j_p=1}^{n}c_{j_1\cdots j_p}^{l}b_{i_1}^{j_1}\cdots b_{i_p}^{j_p}. \]

综上得到

\[c_{i_1\cdots i_p}^k=F_{i_1\cdots i_p}^k+\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n}a_{0,l}^kc_{j_1\cdots j_p}^l b_{i_1}^{j_1}\cdots b_{i_p}^{j_p}. \]

因此, 如果存在{eq-5-8}的解\(\{c_{i_1,\cdots,i_q}^k\}(k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n;q=1,2,\cdots)\)
满足{eq-5-9}, 那么方程{eq-smajdor}在原点的某邻域内有一个形式级数解{eq-5-6}.
下面我们假设

  • (IV) {eq-smajdor}有一个形式级数解{eq-5-6}.

我们引入一列向量空间\(W^{(q)},q=0,1,2,\cdots:W^{(0)}=C^m,W^{(q)}(q>0)\)\(m\times n^q\)-tuples
\(w^{(q)}=\{w^k_{i_1\cdots i_q}\}(k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n)\)的集合,
其中\(w^k_{i_1\cdots i_q}\in \mathbb{C}\), 具有通常的数的加法和乘法.
定义\(W^{(q)}\)中的范数

\[\begin{equation}\tag{eq-5-12} \|w^{(q)}\|_q=\left(\sum_{k=1}^{m}\sum_{i_1\cdots i_q=1}^{n}|w^k_{i_1\cdots i_q}|^2\right)^{1/2}. \end{equation} \]

设正整数\(p\)满足

\[\|[a_{0,l}^k]\|^*(\|B\|_*)^p<1. \]

这样的\(p\)存在是因为\(\|B\|_*<1\).
因此存在一个常数\(\theta<1\)使得

\[\begin{equation}\tag{eq-5-13} \|[a_{0,l}^k]\|^*(\|B\|_*)^p<\theta. \end{equation} \]

利用函数\(\frac{\partial h^k(z,w)}{\partial w^l}\)\(\frac{\partial f_j(z)}{\partial z_i}\)的连续性,
我们可以得到: 存在\(r_1\)\(R\) {\color{red}(\(r_1\le r_0,R\le R_0\))}使得

\[\begin{equation}\tag{eq-5-14} \left|\left|\frac{\partial h^k(z,w)}{\partial w^l}\right|\right|^* \left(\left|\left| \left[\frac{\partial f_j(z)}{\partial z_i}\right]\right|\right|_*\right)^p<\theta, ~~~~||z||\le r_1,~\|w\|_0\le R. \end{equation} \]

引理(lemma-5-1)

\([\alpha_l^k],[\beta_i^j]\)是两个\(m\times m\)\(n\times n\)的矩阵,且
\(\gamma^{(p)}=\{\gamma^l_{j_1\cdots j_p}\}(l=1,\cdots,m;j_1,\cdots,j_p=1,\cdots,n)\)
是空间\(W^{(p)}\)中的一个向量.
那么

\[\begin{equation}\tag{eq-5-15} \|[\alpha_l^k]\gamma^{(p)} [\beta_i^j]^p\|^2 = \sum_{k=1}^{m} \sum_{i_1,\cdots,i_p=1}^{n} \left|\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n}\alpha_l^k \gamma_{j_1\cdots j_p}^{l}\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}\right|^2 \le (\|[\alpha_l^k]\|^*)^2(\|[\beta_i^j]\|_*)^{2p}(\|\gamma^{(p)}\|_p)^2. \end{equation} \]

where \([\beta_i^j]^q=\underbrace{ [\beta_i^j]\bigotimes \cdots \bigotimes [\beta_i^j]}_p\)

在证明这个引理之前, 我们先看看

\[[\alpha_l^k]\gamma^{(p)} [\beta_i^j]^p = ([\alpha_l^k]_{m\times m}\cdot [\gamma^l_{j_1\cdots j_p}]_{m\times n^p} \cdot [\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}]_{n^p\times n^p})_{m\times n^p}. \]

的计算规则.
\([a_l^k]\)\(k\)是行指标, \(l\)是列指标; 在\(\gamma^l_{j_1\cdots j_p}\)\(l\)是行指标,
\(j_1,\cdots,j_p\)是列指标;
\([\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}]\)\(j_1,\cdots,j_p\)是行指标,\(i_1,\cdots,i_p\) 是列行指标.

\(j_1\cdots j_p\)对应的一个数是\((j_1j_2\cdots j_p)\): \((j_1,\cdots,j_p)\)在由\(1,\cdots,n\)组成的\(p\)元数组,
\((j_1j_2\cdots j_p)\)是这些数组在字典序下,
数组\((j_1,j_2\cdots, j_p)\)的位置(即在字典序下, 这个数组\((j_1,\cdots,j_p)\)是第\((j_1j_2\cdots j_p)\)个),
比如\((1,1,\cdots,1)\)是第一个,它对于数\(1\); \((1,1,\cdots,1,n)\)是第\(n\)个,它对应数\(n\).

在这个矩阵\([\alpha_l^k]\gamma^{(p)}\)中, \((k,(j_1\cdots j_p))\)位置的元素是

\[\sum_{l=1}^{m}\alpha_l^k \gamma^l_{j_1\cdots j_p}. \]

进而, 在\([\alpha_l^k]\gamma^{(p)} [\beta_i^j]^p\)中, \((k,(i_1\cdots i_p))\)位置的元素是

\[\sum_{j_1\cdots j_p}^{n} \left(\sum_{l=1}^{m}\alpha_l^k\gamma^l_{j_1\cdots j_p}\right) (\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}). \]

证明

下面我们约定\(0/0=1/\sqrt{n}\).

\[\begin{align*} &\sum_{k=1}^{m} \sum_{i_1,\cdots,i_p=1}^{n} \left|\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n}\alpha_l^k \gamma_{j_1\cdots j_p}^{l}\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}\right|^2 \\ \le & \sum_{k=1}^{m} \sum_{i_1,\cdots,i_p=1}^{n} \left|\sum_{l=1}^{m}\alpha_l^k \sum_{j_1\cdots j_p=1}^{n}\gamma_{j_1\cdots j_p}^{l}\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p} \right|^2, ~~~ (T^l(i_1,\cdots,i_p):=\sum_{j_1\cdots j_p=1}^{n}\gamma_{j_1\cdots j_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p})\\ =&\sum_{k=1}^{m} \sum_{i_1,\cdots,i_p=1}^{n} \left|\sum_{l=1}^{m}\alpha_l^k T^l(i_1,\cdots,i_p)\right|^2 \le \sum_{k=1}^{m} \sum_{i_1,\cdots,i_p=1}^{n} \left|\left(\sum_{l=1}^{m}|\alpha_l^k|^2\right) \left(\sum_{l=1}^{m}|T^l(i_1,\cdots,i_p)|^2\right)\right|\\ =&\left(\sum_{k=1}^{m}\sum_{l=1}^{m}|\alpha_l^k|^2\right) \left( \sum_{i_1,\cdots,i_p=1}^{n} \sum_{l=1}^{m}|T^l(i_1,\cdots,i_p)|^2\right) =(\|[\alpha_l^k]\|^*)^2 \left( \sum_{i_1,\cdots,i_p=1}^{n} \sum_{l=1}^{m} \left| \sum_{j_1\cdots j_p=1}^{n}\gamma_{j_1\cdots j_p}^{l}\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}\right|^2\right)\\ =&(\|[\alpha_l^k]\|^*)^2 \left( \sum_{i_1,\cdots,i_p=1}^{n} \sum_{l=1}^{m} \left|\sum_{j_p=1}^{n} \sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \beta_{i_p}^{j_p}\right|^2 \right)\\ =& (\|[\alpha_l^k]\|^*)^2 \left( \sum_{i_1,\cdots,i_p=1}^{n} \sum_{l=1}^{m} \left|\sum_{j_p=1}^{n}\beta_{i_p}^{j_p} \left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right] \right|^2 \right)\\ =& (\|[\alpha_l^k]\|^*)^2 \left\{\sum_{i_1,\cdots,i_p=1}^{n} \sum_{l=1}^{m} {\color{red} \left(\sum_{s_p=1}^{n} \left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]^2 \right) } \right. \\ &\left.\left|\sum_{j_p=1}^{n}\beta_{i_p}^{j_p} \frac{\left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]}{\color{red}\left(\sum_{s_p=1}^{n}\left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]^2\right)^{1/2}}\right|^2 \right\} \\ =&(\|[\alpha_l^k]\|^*)^2 \left\{\sum_{i_1,\cdots,i_{p-1}=1}^{n} \sum_{l=1}^{m} {\color{red} \left(\sum_{s_p=1}^{n} \left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]^2 \right) }\cdot \right. \\ &\left.\cdot \left( {\color{blue}\sum_{i_p=1}^{n}\left|\sum_{j_p=1}^{n}\beta_{i_p}^{j_p} \frac{\left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]}{\color{red}\left(\sum_{s_p=1}^{n}\left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]^2\right)^{1/2}}\right|^2 } \right) \right\} \\ =&(\|[\alpha_l^k]\|^*)^2 \left\{\sum_{i_1,\cdots,i_{p-1}=1}^{n} \sum_{l=1}^{m} {\color{red} \left(\sum_{s_p=1}^{n} \left[\sum_{j_1\cdots j_{p-1}=1}^{n} \left(\gamma_{j_1\cdots j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}}\right) \right]^2 \right) } (\|[\beta_i^j]\|_*)^2 \right\} \end{align*} \]

于是

\[\begin{align*} \tag{eq-5-16} &\sum_{k=1}^{m} \sum_{i_1,\cdots,i_p=1}^{n} \left|\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n}\alpha_l^k \gamma_{j_1\cdots j_p}^{l}\beta_{i_1}^{j_1}\cdots \beta_{i_p}^{j_p}\right|^2 \\ \le & (\|[\alpha_l^k]\|^*)^2 (\|[\beta_i^j]\|_*)^2 \left\{ \sum_{l=1}^{m}\sum_{i_1,\cdots,i_{p-1}=1}^{n} {\color{red} \left(\sum_{s_p=1}^{n} \left[\sum_{j_1\cdots j_{p-1}=1}^{n} \gamma_{j_1\cdots j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-1}}^{j_{p-1}} \right]^2 \right) } \right\} \\ = & (\|[\alpha_l^k]\|^*)^2(\|[\beta_i^j]\|_*)^2 \left\{ \sum_{l=1}^{m}\sum_{i_1,\cdots,i_{p-1}=1}^{n} {\color{red} \left(\sum_{s_p=1}^{n} \left[\sum_{j_{p-1}}^{n}\beta_{i_{p-1}}^{j_{p-1}} \left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right] \right]^2 \right) } \right\} \\ =\cdot \cdot & \left\{ \sum_{l=1}^{m}\sum_{i_1,\cdots,i_{p-1}=1}^{n} {\color{red} \left(\sum_{s_p=1}^{n} \left[\sum_{j_{p-1}}^{n}\beta_{i_{p-1}}^{j_{p-1}} \frac{\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]} {\left(\sum_{s_{p-1}=1}^{n}\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, s_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]^2\right)^{1/2}} \right]^2 \right) }\cdot \right. \\ &\left.\cdot \left(\sum_{s_{p-1}=1}^{n}\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, s_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]^2\right) \right\} \\ =& \cdot\cdot \left\{ \sum_{l=1}^{m}\sum_{i_1,\cdots,i_{p-2}=1}^{n} \sum_{s_p=1}^{n} {\color{red} \left(\sum_{i_{p-1}=1}^{n} \left[\sum_{j_{p-1}}^{n}\beta_{i_{p-1}}^{j_{p-1}} \frac{\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, j_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]} {\left(\sum_{s_{p-1}=1}^{n}\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, s_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]^2\right)^{1/2}} \right]^2 \right) }\cdot \right. \\ &\left.\cdot \left(\sum_{s_{p-1}=1}^{n}\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, s_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]^2\right) \right\}\\ =&(\|[\alpha_l^k]\|^*)^2(\|[\beta_i^j]\|_*)^4 \left\{ \sum_{l=1}^{m}\sum_{i_1,\cdots,i_{p-2}=1}^{n} \sum_{s_p=1}^{n} \cdot \sum_{s_{p-1}=1}^{n}\left[\sum_{j_1\cdots j_{p-2}=1}^{n} \gamma_{j_1\cdots j_{p-2}, s_{p-1}s_p}^{l} \beta_{i_1}^{j_1}\cdots \beta_{i_{p-2}}^{j_{p-2}} \right]^2 \right\}\\ &\cdots\cdots\\ \le &(\|[\alpha_l^k]\|^*)^2(\|[\beta_i^j]\|_*)^{2p} \left\{\sum_{l=1}^{m}\sum_{s_1,\cdots,s_{p}=1}^{n} \left| \gamma_{s_1\cdots s_p}^{l} \right|^2 \right\}\\ =&(\|[\alpha_l^k]\|^*)^2(\|[\beta_i^j]\|_*)^{2p}(\|\gamma^{(p)}\|_p)^2. \end{align*} \]

因此

\[\|[\alpha_l^k]\gamma^{(p)} [\beta_i^j]^p\| \le (\|[\alpha_l^k]\|^*)(\|[\beta_i^j]\|_*)^{p}\|\gamma^{(p)}\|_p. \]

证毕.

递归地, 定义\(H_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q)})\)如下: \(\left(w^{(r)}=(w^l_{j_1\cdots j_r})\right)\)

\[\begin{equation} \tag{eq-5-17} \begin{aligned} H_{i_1}^k(z,w,w^{(1)})&=\frac{\partial h^k}{\partial z_{i_1}} +\sum_{l=1}^{m}\sum_{j_1=1}^{n}\frac{\partial h^k}{\partial w^l} w_{j_1}^{l}\frac{\partial f_{j_1}}{\partial z_{i_1}},\\ H_{i_1\cdots i_{q+1}}^k(z,w,w^{(1)},\cdots, w^{(q+1)}) &=\frac{\partial H_{i_1\cdots i_{q}}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q}\sum_{l=1}^{m}\sum_{j_1\cdots j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_s}^l} w_{j_1\cdots j_{s+1}}^{l} \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}. \end{aligned} \end{equation} \]

在{eq-5-17}中, 当\(s=0\)时, \(w_{j_1\cdots j_{s}}^{l}=w^{l}\).

引理(lemma-5-2)

假设\(f,h\)满足前面的假设{\rm (I)(III)}. 设\(\psi(z)=h(z,\phi[f(z)])\),
其中\(\phi\)\(z=0\)的一个邻域内有定义并且解析.
那么

\[\begin{equation}\tag{eq-5-18} \frac{\partial^q \psi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} =H_{i_1\cdots i_q}^k(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(q)}[f(z)]), \end{equation} \]

\(k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n;q=1\cdots,p;\)
其中

\[\phi^{(q)}[f(z)]=\left\{\frac{\partial ^s}{\partial z_{i_1}\cdots z_{i_s}}\phi^k(z)\right\}, ~~k=1,\cdots,m;~ i_1,\cdots,i_s=1,\cdots,n;~s=0,1,\cdots,p. \]

证明

我们用数学归纳法来证明此引理.
首先, 对
(\(h(z,w)=h(z_1,\cdots,z_n;w^1,\cdots,w^m)\))

\[\begin{aligned} \psi(z)=h(z,\phi[f(z)]) =&h(z_1,\cdots,z_n;\phi^1(f_1(z_1,\cdots,z_n),\cdots, f_n(z_1,\cdots,z_n)), \cdots,\\ &\phi^m(f_1(z_1,\cdots,z_n),\cdots,f_n(z_1,\cdots,z_n))), \end{aligned} \]

两边对\(z_{i_1}\)求导, 有

\[\begin{equation*} \begin{aligned} \frac{\partial \psi^k(z)}{\partial z_{i_1}} =&\frac{\partial h^k(z,\phi[f(z)])}{\partial z_{i_1}} + \sum_{l=1}^{m}\frac{\partial h^k}{\partial w^l}\sum_{j_1=1}^{n} \frac{\partial \phi^l}{\partial z_{j_1}}\frac{\partial f_{j_1}}{\partial z_{i_1}}\\ =&\frac{\partial h^k(z,\phi[f(z)])}{\partial z_{i_1}} + \sum_{l=1}^{m}\sum_{j_1=1}^{n}\frac{\partial h^k}{\partial w^l} \frac{\partial \phi^l}{\partial z_{j_1}}\frac{\partial f_{j_1}}{\partial z_{i_1}}\\ =&H_{i_1}^k(z,\phi[f(z)],\phi^{(1)}[f(z)]). \end{aligned} \end{equation*} \]

假设{eq-5-18}对\(q\)成立, 我们证明它对\(q+1\)也成立, 即证明:

\[\begin{equation}\tag{eq-5-19} \begin{aligned} \frac{\partial^{q+1}\psi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_{q+1}}} =&H_{i_1\cdots i_{q+1}}^k(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(q+1)}[f(z)])\\ =&\frac{\partial H_{i_1\cdots i_{q}}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q}\sum_{l=1}^{m}\sum_{j_1\cdots j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_s}^l} \frac{\partial^{s+1}\phi^l}{\partial z_{j_{1}}\cdots \partial z_{j_{s+1}}} \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}. \end{aligned} \end{equation} \]

{eq-5-18}对\(q\)成立说明

\[\begin{equation*} \begin{aligned} \frac{\partial^q\psi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} =&H_{i_1\cdots i_q}^k(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(q)}[f(z)])\\ =& {\color{red} {H_{i_1\cdots i_q}^k\left(z_1,\cdots,z_n; \left(\frac{\partial^s \phi^l[f(z)]}{\partial z_{j_1}\cdots \partial z_{j_s}}:l=1\cdots,m; j_1,\cdots,j_s=1,\cdots,n;s=0,\cdots,q\right) \right)} } \end{aligned} \end{equation*} \]

这是把

\[H_{i_1\cdots i_q}^k(z_1,\cdots,z_n;(w^l_{j_1\cdots j_s}:l=1\cdots,m;j_1,\cdots,j_s=1,\cdots,n; s=0,1,\cdots,q)) \]

中的\(w^l_{j_1\cdots j_s}\)替换为

\[\frac{\partial^s \phi^l}{\partial z_{j_1}\cdots \partial z_{j_s}} \]

的结果.
因此(对上面红色部分微分)

\[\begin{equation*} \begin{aligned} \frac{\partial^{q+1}\psi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q+1}} =&\frac{\partial H_{i_1\cdots i_q}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q}\sum_{l=1}^{m}\sum_{j_1,\cdots,j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots i_{s}}^l} \frac{\partial }{\partial z_{j_{s+1}}} \left( \frac{\partial^{s} \phi^l}{\partial z_{j_1}\cdots \partial z_{j_{s}}} \right) \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}\\ =&\frac{\partial H_{i_1\cdots i_q}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q}\sum_{l=1}^{m}\sum_{j_1,\cdots,j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots i_{s}}^l} \frac{\partial^{s+1} \phi^l}{\partial z_{j_1}\cdots \partial z_{j_{s+1}}} \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}\\ =&H_{i_1\cdots i_{q+1}}^k(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(q+1)}[f(z)]). \end{aligned} \end{equation*} \]

至此我们完成了整个证明.

引理(lemma-5-3)

在假设{\rm (I)(III)(IV)}下, 我们有

\[\begin{equation}\tag{eq-5-20} c_{i_1\cdots i_q}^k=H_{i_1\cdots i_q}^k(0,0,c^{(1)},\cdots,c^{(q)}),~~ k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n;q=1,2,\cdots,p, \end{equation} \]

其中

\[c^{(q)}=\{c_{i_1\cdots i_q}^k\}(k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n). \]

证明

由上面的红色部分我们知道

\[\begin{equation*} \begin{aligned} &\frac{\partial^q\phi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} =H_{i_1\cdots i_q}^k(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(q)}[f(z)])\\ =& {H_{i_1\cdots i_q}^k\left(z_1,\cdots,z_n; \left(\frac{\partial^s \phi^l}{\partial z_{j_1}\cdots \partial z_{j_s}}:l=1\cdots,m; j_1,\cdots,j_s=1,\cdots,n;s=0,\cdots,q\right) \right)} \end{aligned} \end{equation*} \]

由{eq-5-7}, 我们知道\(c_{i_1\cdots i_q}^k\)
\(\frac{\partial^q\phi^k}{\partial z_{i_1}\cdots z_{i_q}}\)
这个函数在\(z=0\)处的值.
上式中令\(z=0\), 我们得到

\[\begin{equation}\tag{eq-5-21-0} c_{i_1\cdots i_q}^k=H_{i_1\cdots i_q}^k(0,0,c^{(1)},\cdots,c^{(q)}). \end{equation} \]

证毕.

引理(lemma-5-4)

在假设{\rm (I)(III)}下, 我们有

\[\begin{equation}\tag{eq-5-21} H_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q)}),~k=1,\cdots,m;i_1,\cdots,i_q=1,\cdots,n;q=1,2,\cdots,p, \end{equation} \]

是关于\(z,w,w^{(1)},\cdots, w^{(q)}\)\(\|z\|\le r_0,\|w\|_0\le R_0, \|w^{(1)}\|\in W^{(1)},\cdots,\|w^{(q)}\|\in W^{(q)}\)上的解析函数.
并且,

\[\begin{equation} \tag{eq-5-22} \begin{aligned} &H_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q)})\\ =&G_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q-1)})+ \sum_{l=1}^{m}\sum_{j_1\cdots j_{q}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{q}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{q}}}{\partial z_{i_q}}, ~~q=1,2,\cdots,p, \end{aligned} \end{equation} \]

其中\(G_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q-1)})\)是关于
\(z,w,w^{(1)},\cdots, w^{(q-1)}\)在$|z|\le r_0,|w|_0\le R_0, $
\(\|w^{(1)}\|\in W^{(1)},\cdots,\)
\(\|w^{(q-1)}\|\in W^{(q-1)}\)上的解析函数.

证明

由{eq-5-17}, 我们知道\(H_{i_1\cdots i_q}^k\)是解析的.

下面我们利用数学归纳法来证明{eq-5-22}.
对于\(q=1\)的情况, {eq-5-17}表明

\[H_{i_1}^k(z,w,w^{(1)})=\frac{\partial h^k}{\partial z_{i_1}}+ \sum_{l=1}^{m}\sum_{j_1=1}^{n}\frac{\partial h^k}{\partial w^l} w_{j_1}^{l} \frac{\partial f_{j_1}}{\partial z_{i_1}} =G_{i_1}^k(z,w)+\sum_{l=1}^{m}\sum_{j_1=1}^{n}\frac{\partial h^k}{\partial w^l} w_{j_1}^{l} \frac{\partial f_{j_1}}{\partial z_{i_1}}, \]

where

\[G_{i_1}^k(z,w)=\frac{\partial h^k(z,w)}{\partial z_{i_1}}. \]

这就证明了\(q=1\)的情况.

假设{eq-5-22}对\(q\)成立, 我们证明它对\(q+1\)也成立, 即证明:

\[\begin{equation}\tag{eq-5-23} \begin{aligned} &H_{i_1\cdots i_{q+1}}^k(z,w,w^{(1)},\cdots, w^{(q+1)})\\ =&G_{i_1\cdots i_{q+1}}^k(z,w,w^{(1)},\cdots, w^{(q)})+ \sum_{l=1}^{m}\sum_{j_1\cdots j_{q+1}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{q+1}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{q+1}}}{\partial z_{i_{q+1}}}. \end{aligned} \end{equation} \]

利用{eq-5-17}我们有

\[\begin{equation}\tag{eq-5-24} \begin{aligned} &H_{i_1\cdots i_{q+1}}^k(z,w,w^{(1)},\cdots, w^{(q+1)}) =\frac{\partial H_{i_1\cdots i_q}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q}\sum_{l=1}^{m}\sum_{j_1\cdots j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_s}^l} w_{j_1\cdots j_{s+1}}^{l} \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}\\ =&\left[\frac{\partial H_{i_1\cdots i_q}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q-1}\sum_{l=1}^{m}\sum_{j_1\cdots j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_s}^l} w_{j_1\cdots j_{s+1}}^{l} \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}\right]+\sum_{l=1}^{m}\sum_{j_1\cdots j_{q+1}=1}^{n} {\color{red}\frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_q}^l} } w_{j_1\cdots j_{q+1}}^{l} \frac{\partial f_{j_{q+1}}}{\partial z_{i_{q+1}}}. \end{aligned} \end{equation} \]

由{eq-5-22}对\(q\)的情况, 我们有

\[\begin{equation*} \begin{aligned} &H_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q)})\\ =&G_{i_1\cdots i_q}^k(z,w,w^{(1)},\cdots, w^{(q-1)})+ \sum_{l=1}^{m}\sum_{j_1\cdots j_{q}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{q}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{q}}}{\partial z_{i_q}}, ~~q=1,2,\cdots,p, \end{aligned} \end{equation*} \]

利用上式我们可以得到

\[\begin{equation*} \begin{aligned} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_q}^l} =\frac{\partial h^k(z,w)}{\partial w^l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{q}}}{\partial z_{i_q}} \end{aligned} \end{equation*} \]

把它带入{eq-5-24}, 我们得到

\[\begin{equation*} \begin{aligned} &H_{i_1\cdots i_{q+1}}^k(z,w,w^{(1)},\cdots, w^{(q+1)})\\ =&\left[\frac{\partial H_{i_1\cdots i_q}^k}{\partial z_{i_{q+1}}}+ \sum_{s=0}^{q-1}\sum_{l=1}^{m}\sum_{j_1\cdots j_{s+1}=1}^{n} \frac{\partial H_{i_1\cdots i_q}^k}{\partial w_{j_1\cdots j_s}^l} w_{j_1\cdots j_{s+1}}^{l} \frac{\partial f_{j_{s+1}}}{\partial z_{i_{q+1}}}\right]\\ &+\sum_{l=1}^{m}\sum_{j_1\cdots j_{q+1}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{q+1}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{q}}}{\partial z_{i_q}} \frac{\partial f_{j_{q+1}}}{\partial z_{i_{q+1}}}\\ =&G_{i_1,\cdots,i_{q+1}}^k(z,w,\cdots,w^{(q)})+ \sum_{l=1}^{m}\sum_{j_1\cdots j_{q+1}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{q+1}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{q}}}{\partial z_{i_q}} \frac{\partial f_{j_{q+1}}}{\partial z_{i_{q+1}}}. \end{aligned} \end{equation*} \]

证毕.

\(H_p(z,w,w^{(1)},\cdots, w^{(p)})\)表示空间\(W^{(p)}\)中的向量
\( \left(\frac{\partial ^p\phi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_p}}\in W^{(p)}\right)\):

\[\{H_{i_1\cdots i_p}^k(z,w,w^{(1)},\cdots, w^{(p)})\},~k=1,\cdots,m;i_1,\cdots,i_p=1,\cdots,n. \]

引理(lemma-5-5)

在假设{\rm (I)(II)(III)}下, 存在一个常数\(L>0\)(独立于\(z\))使得对于任意的 \((z,\hat{w},\hat{w}^{(1)},\)
\(\cdots,\hat{w}^{(p)})\), \((z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots,\hat{\hat{w}}^{(p)})\in Z\), 我们有

\[\begin{equation}\tag{eq-5-25} \|H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p)})-H_p(z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots, \hat{\hat{w}}^{(p)})\| \le L\sum_{q=0}^{p-1}+\|\hat{w}^{(q)}-\hat{\hat{w}}^{(q)}\|_q+\theta \|\hat{w}^{(p)}-\hat{\hat{w}}^{(p)}\|_p, \end{equation} \]

其中\(\theta\)是前面出现过的一个小于\(1\)的常数并且

\[Z=\{z:\|z\|\le r_0\}\times \{w:\|w\|_0\le R\}\times K(\mathring{w}^{(1)},\rho_1)\times \cdots \times K(\mathring{w}^{(p-1)},\rho_{p-1})\times K(\mathring{w}^{(p)},\rho_p), \]

这里\(\mathring{w}^{(q)}\)\(W^{(q)}\)中的任意固定的元素, \(\rho_q\)是任意固定的正数, 并且

\[K(\mathring{w}^{(q)},\rho_q)=\{w^{(q)}:\|w^{(q)}-\mathring{w}^{(q)}\|_q\le \rho_q\},~q=1,\cdots,p. \]

证明

\[\begin{aligned} H^k_{i_1\cdots i_p}(z,w,w^{(1)},\cdots, w^{(p-1)}) =&G^k_{i_1\cdots i_p}(z,w,w^{(1)},\cdots, w^{(p-1)})+ \sum_{l=1}^{m}\sum_{j_1\cdots j_{p}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{p}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{p}}}{\partial z_{i_p}}\\ =&G^k_{i_1\cdots i_p}(z,w,w^{(1)},\cdots, w^{(p-1)})+N^k_{i_1\cdots i_p}(z,w, w^{(p)}) \end{aligned} \]

其中

\[N^k_{i_1\cdots i_p}(z,w,w^{(p)})=\sum_{l=1}^{m}\sum_{j_1\cdots j_{p}=1}^{n} \frac{\partial h^k(z,w)}{\partial w^l}w_{j_1\cdots j_{p}}^{l} \frac{\partial f_{j_{1}}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_{p}}}{\partial z_{i_p}}. \]

\[\begin{aligned} H_p(z,w,w^{(1)},\cdots, w^{(p)})&=\{H^k_{i_1\cdots i_p}(z,w,w^{(1)},\cdots, w^{(p)})\},\\ G_p(z,w,w^{(1)},\cdots, w^{(p-1)})&=\{G^k_{i_1\cdots i_p}(z,w,w^{(1)},\cdots, w^{(p-1)})\},\\ N_p(z,w,w^{(p)})&=\{N^k_{i_1\cdots i_p}(z,w,w^{(p)})\}. \end{aligned} \]

{\color{red}\bf 为了把项\(w^l_{j_1\cdots j_p}\)单独分离出来, }
我们写

\[\begin{aligned} &\|H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p)})- H_p(z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots, \hat{\hat{w}}^{(p)})\|_p\\ \le & \|H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p-1)},\hat{w}^{(p)})- H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p-1)},\hat{\hat{w}}^{(p)})\|_p\\ &+\|H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p-1)},\hat{\hat{w}}^{(p)})- H_p(z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots,\hat{\hat{w}}^{(p-1)},\hat{\hat{w}}^{(p)})\|_p\\ \le & \|N_p(z,\hat{w},\hat{w}^{(p)})-N_p(z,\hat{w},\hat{\hat{w}}^{(p)})\|_p\\ &+\|H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p-1)},\hat{\hat{w}}^{(p)})- H_p(z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots,\hat{\hat{w}}^{(p-1)},\hat{\hat{w}}^{(p)})\|_p. \end{aligned} \]

在上式中,

\[\begin{aligned} &\|N_p(z,\hat{w},\hat{w}^{(p)})-N_p(z,\hat{w},\hat{\hat{w}}^{(p)})\|_p =\left[\sum_{k=1}^{m}\sum_{i_1\cdots i_p=1}^{n}\left|N^k_{i_1\cdots i_p}(z,\hat{w},\hat{w}^{(p)}) -N^k_{i_1\cdots i_p}(z,\hat{w},\hat{\hat{w}}^{(p)})\right|^2\right]^{1/2}\\ =&\left[\sum_{k=1}^{m}\sum_{i_1\cdots i_p=1}^{n} \left|\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n} \frac{\partial N^k_{i_1\cdots i_p}(z,\hat{w},\hat{w}^{(p)})}{\partial w_{j_1\cdots j_p}^l} \left[\hat{w}_{j_1\cdots j_p}^{l}-\hat{\hat{w}}_{j_1\cdots j_p}^{l}\right] \right|^2\right]^{1/2}\\ =&\left[\sum_{k=1}^{m}\sum_{i_1\cdots i_p=1}^{n} \left|\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n} \frac{\partial h^k}{\partial w^l}\frac{\partial f_{j_1}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_p}}{\partial z_{i_p}} \left[\hat{w}_{j_1\cdots j_p}^{l}-\hat{\hat{w}}_{j_1\cdots j_p}^{l}\right] \right|^2\right]^{1/2}\\ =&\left[\sum_{k=1}^{m}\sum_{i_1\cdots i_p=1}^{n} \left|\sum_{l=1}^{m}\sum_{j_1\cdots j_p=1}^{n} \frac{\partial h^k}{\partial w^l} \left[\hat{w}_{j_1\cdots j_p}^{l}-\hat{\hat{w}}_{j_1\cdots j_p}^{l}\right] \frac{\partial f_{j_1}}{\partial z_{i_1}}\cdots \frac{\partial f_{j_p}}{\partial z_{i_p}} \right|^2\right]^{1/2}~~~(\text{利用引理}{lemma-5-1})\\ \le &\left(\left|\left|\frac{\partial h^k(z,w)}{\partial w^l}\right|\right|^*\right) \left(\left|\left|\frac{\partial f_j(z)}{\partial z_i}\right|\right|_*\right)^p \|\hat{w}^{(p)}-\hat{\hat{w}}^{(p)}\|_p ~~~(\text{利用引理}{eq-5-13})\\ \le &\theta \|\hat{w}^{(p)}-\hat{\hat{w}}^{(p)}\|_p \end{aligned} \]

并且

\[\begin{aligned} &\|H_p(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p-1)},\hat{\hat{w}}^{(p)})- H_p(z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots,\hat{\hat{w}}^{(p-1)},\hat{\hat{w}}^{(p)})\|_p\\ =&\left( \sum_{k=l}^{m}\sum_{i_1\cdots i_p=1}^{n} \left| H^k_{i_1\cdots i_p}(z,\hat{w},\hat{w}^{(1)},\cdots, \hat{w}^{(p-1)},\hat{\hat{w}}^{(p)}) - H^k_{i_1\cdots i_p}(z,\hat{\hat{w}},\hat{\hat{w}}^{(1)},\cdots,\hat{\hat{w}}^{(p-1)},\hat{\hat{w}}^{(p)}) \right|^2 \right)^{1/2}\\ \le &\left( \sum_{k=l}^{m}\sum_{i_1\cdots i_p=1}^{n} \left| \sum_{q=0}^{p-1} \sum_{l=1}^{m} \sum_{j_1\cdots j_q=1}^{n} \frac{\partial H^k_{i_1\cdots i_p}}{\partial w^l_{j_1\cdots j_q}} \left[\hat{w}^l_{j_1\cdots j_q}-\hat{\hat{w}}^l_{j_1\cdots j_q}\right] \right|^2 \right)^{1/2} ~~~~~(w^l_{j_1\cdots j_q}=w^l~\text{for}~q=0) \\ &(\text{利用}\|\hat{w}^l_{j_1\cdots j_q}-\hat{\hat{w}}^l_{j_1\cdots j_q}\|\le \|\hat{w}^{(q)}-\hat{\hat{w}}^{(q)}\|_q)\\ \le &\left( \sum_{k=l}^{m}\sum_{i_1\cdots i_p=1}^{n} \left| \sum_{q=0}^{p-1}\|\hat{w}^{(q)}-\hat{\hat{w}}^{(q)}\|_q \sum_{l=1}^{m} \sum_{j_1\cdots j_q=1}^{n} \left|\frac{\partial H^k_{i_1\cdots i_p}}{\partial w^l_{j_1\cdots j_q}}\right| \right|^2 \right)^{1/2}~~~ (\text{假设} \sup_{Z}\left|\frac{\partial H^k_{i_1\cdots i_p}}{\partial w^l_{j_1\cdots j_q}}\right|\le L_1)\\ \le &\left(L_1^2m n^p \left(\sum_{q=0}^{p-1}\|\hat{w}^{q}-\hat{\hat{w}}^{(q)}\|_q\right)^2\right)^{1/2} \le L_1 m^{1/2} n^{p/2} \sum_{q=0}^{p-1}\|\hat{w}^{q}-\hat{\hat{w}}^{(q)}\|_q\\ =&L \sum_{q=0}^{p-1}\|\hat{w}^{q}-\hat{\hat{w}}^{(q)}\|_q,~~~~L=L_1 m^{1/2} n^{p/2}.\\ \end{aligned} \]

证毕.

定理 (theorem-5-1)

假设 {\rm (I)(II)(III)(IV)} 成立,则对于由 {eq-5-20} 确定的每一组 \(c^{(1)}, \cdots, c^{(p)}\),恰好存在唯一的一个函数 \(\phi\)\(z=0\) 的一个邻域内有定义且解析,满足方程 {eq-smajdor},使得:

\[\begin{equation}\tag{eq-5-26} \phi(0) = 0, \quad \phi^{(q)} = c^{(q)}, \quad q = 1, 2, \cdots, p. \end{equation} \]

证明:

利用压缩映像原理证明.

固定一个正数\(K>0\)以及\(\vartheta\in (\theta,1)\). 取\(r>0\)满足下面的不等式:

\[\begin{equation}\tag{eq-determine-r} \begin{aligned} &\sup_{\|z\|\le r}\left|\left|\frac{\partial f_j(z)}{\partial z_i}\right|\right|_*<1,\\ &r<\min(1,r_1),\\ &m^{1/2} n^{p} r (c_{1}+ c_{2}+\cdots+c_{p-1}+c_p+K)<R,\\ &L \sum_{q=0}^{p-1} m^{1/2} n^{p-q/2} r \left(\sum_{t=q+1}^{p} c_{t}+K\right)\le \frac{1}{2}(1-\theta)K, \\ &\|H_p(z,0,c^{(1)},\cdots,c^{(p)})-H_p(0,0,c^{(1)},\cdots,c^{(p)})\|_p\le \frac{1}{2} (1-\theta)K,~~~\forall \|z\|\le r,\\ & L\sum_{q=0}^{p-1}m^{1/2} n^{p-q/2} r^{p-q} +\theta \le \vartheta. \end{aligned} \end{equation} \]

为了利用引理{lemma-5-5}, 我们取\(\mathring{w}^{(q)}=c^{(q)},q=1\cdots,p\), 且

\[\rho_q=m^{1/2} n^{p-q/2} (c_{q+1}+ c_{q+2}+\cdots+c_{p-1}+c_p+K). \]

Step 1. 构造度量空间\(\mathfrak{R}\)为满足下面条件的函数\(\phi\)的集合:

  • \(1^\circ\) \(\phi\)\(\|z\|\le r\)上有定义, 在\(\|z\|<r\)内解析, 在\(\|z\|\)上连续.

  • \(2^\circ\)

\[\phi^k(z)=\sum_{q=0}^{p}c^k_{i_1\cdots i_q}z_{i_1}\cdots z_{i_q} +\sum_{q=p+1}^{\infty}d^k_{i_1\cdots i_q}z_{i_1}\cdots z_{i_q},~~~\|z\|\le r \]

其中\(c^k_{i_1\cdots i_q}\)已确定, \(d^k_{i_1\cdots i_q}\)是任意的复数.

  • \(3^\circ\)

\[\|\phi^{(p)}(z)-c^{(p)}\|_p\le K,~~~~\|z\|\le r. \]

在空间\(\mathfrak{R}\)中定义度量\(\rho\):

\[\rho(\phi,\hat{\phi})=\sup_{\|z\|\le r}\|\phi^{(p)}(z)-\hat{\phi}^{(p)}(z)\|_p \]

Step 2. 证明空间\((\mathfrak{R},\rho)\)是完备的.

\(\{\phi_n|n\ge 1\}\)是空间\((\mathfrak{R},\rho)\)中的任一Cauchy序列, 即: 对于任意的\(\varepsilon>0\),
存在一个正整数\(N=N(\varepsilon)\)使得

\[\rho(\phi_n,\phi_m)=\sup_{\|z\|\le r} \left(\sum_{k=1}^{m}\sum_{i_1\cdots i_p=1}^{n} \left|\frac{\partial^p\phi_n^k(z)}{\partial z_{i_1}\cdots z_{i_p}} -\frac{\partial^p\phi_m^k(z)}{\partial z_{i_1}\cdots z_{i_p}} \right|^2\right)^{1/2} <\varepsilon,~~~\forall n>m\ge N. \]

因此, 对于固定的\(1\le k\le m\)\(1\le i_1,\cdots i_p\le n\),

\[\left\{\frac{\partial^p\phi_n^k(z)}{\partial z_{i_1}\cdots z_{i_p}} \middle| n\ge 1\right\} \]

一致收敛. 因此存在\(\phi_{(p)}(z)\)使得

\[\phi_n^{(p)}(z)\rightrightarrows \phi_{(p)}(z) ,~~~~ \text{on}~~ \|z\|\le r. \]

利用Taylor公式:

\[\begin{equation}\tag{Taylor-formula} \begin{aligned} \frac{\partial^q\phi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} =&c_{i_1\cdots i_q}^k+ \sum_{j_1=1}^{n}c^{k}_{i_1\cdots i_q j_1}z_{j_1} +\frac{1}{2!}\sum_{j_1,j_2=1}^{n}c^{k}_{i_1\cdots i_q j_1j_2} z_{j_1} z_{j_2}\\ &+\cdots+ \frac{1}{(p-q-1)!}\sum_{j_1,j_2,\cdots, j_{p-q-1}=1}^{n}c^{k}_{i_1\cdots i_q j_1j_2}z_{j_1} z_{j_2}\cdots z_{j_{p-q-1}}\\ &+\frac{1}{(p-q)!}\sum_{j_1,j_2,\cdots, j_{p-q}=1}^{n} \frac{\partial^p\phi^{k}(\xi)}{\partial z_{i_1}\cdots \partial z_{i_q}\partial z_{j_1}\cdots \partial z_{j_{p-q}}}z_{j_1} z_{j_2}\cdots z_{j_{p-q}}. \end{aligned} \end{equation} \]

进而,

\[\left|\frac{\partial^q\phi_n^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} -\frac{\partial^q\phi_m^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} \right| \le \frac{1}{(p-q)!} r^{p-q} \rho(\phi_m,\phi_n) \]

并且

\[\|\phi_m^{(q)}(z)-\phi_n^{(q)}(z)\|_q\le\frac{1}{(p-q)!} m^{1/2}n^{(p-q)/2} r^{p-q}\rho(\phi_m,\phi_n). \]

有了它, 利用与上面类似的方式证明: 存在\(\phi_{(q)},q=0,1\cdots,p-1\)使得

\[\phi_n^{(q)}(z)\rightrightarrows \phi_{(q)}(z) ~~\text{on}~\|z\|\le r. \]

进而

\[\phi_{0}^{q}(z)=\phi_{(q)}(z),~~q=1,2,\cdots,p. \]

\(\phi_{(0)}(z)=\phi(z)\).
我们论证\(\phi(z)\in \mathfrak{R}\).

\(1^\circ\) \(\phi_n\)\(\|z\|\)上是连续的且一致收敛于\(\phi\)从而\(\phi\)\(\|z\|\)上也是连续的;
\(\phi_n\)\(\|z\|<r\)内是解析的且一致收敛于\(\phi\), Weierstrass定理保证了\(\phi\)也是解析的在\(\|z\|<r\)内.

\(2^\circ\) \(\phi_n\)\(\|z\|<r\)上是解析的, 从而有形式级数展开; 此外, 对于\(q=1,\cdots,p\),

\[\phi_n^{(q)}(0)\to \phi^{(q)}(0),~~n\to \infty, \]

因为\(\phi_n^{(q)}(0)=c^{(q)}\), 所以\(\phi^{(q)}(0)=c^{(q)}\).
同理, \(\phi(0)=0\).

\(3^\circ\)
\(\phi_n\in \mathfrak{R}\Rightarrow \|\phi_n^{(p)}(z)-c^{(p)}\|_p \le K\)对于\(\|z\|\le r\),
这意味着对于任意固定的\(z:\|z\|\le r\), \(\|\phi_n^{(p)}(z)-c^{(p)}\|_p \le K,\)
从而对于任意固定的\(z:\|z\|\le r\), \(\|\phi^{(p)}(z)-c^{(p)}\|_p \le K,\)
\(\|\phi^{(p)}(z)-c^{(p)}\|_p \le K\)对于\(\|z\|\le r. \)
至此证明完成了Step 3.

Step 3. 我们定义算子\(T\)如下:

\[\begin{aligned} T(\phi)(z)=&h(z,\phi[f(z)]),~~~\|z\|\le r. \end{aligned} \]

我们说明\(T\)是良定义的, 即如果\(\phi\in \mathfrak{R}\), 则\(\|\phi[f(z)]\|\le R\)对于\(\|z\|\le r\)成立.
首先, 利用\(\|B\|_*<1\), 我们有
{\color{red}[这一部分要放在{eq-determine-r}中!]

\[\|f(z)\|\le \sup_{\|z\|\le r}\left|\left|\frac{\partial f_j(z)}{\partial z_i}\right|\right|_*\|z\|\le \|z\|\le r, ~~~\|z\|\le r, \]

\(f(z)\in K(0,r)\)\(z\in K(0,r)\).
}
下面说明\(\phi[f(z)]\in K(0,R)\)\(\phi\in \mathfrak{R}\)\(z\in K(0,r)\).
由{Taylor-formula}, 我们有

\[\begin{aligned} &|\frac{\partial^q\phi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}}-c^k_{i_1\cdots i_q}|\\ \le & r c_{q+1}+\frac{1}{2!}r^2 c_{q+2}+\cdots+\frac{1}{(p-q-1)!}r^{p-q-1}c_{p-1}+\frac{1}{(p-q)!}r^{p-q}\| \sup \|\phi^{(p)}(z)\|_p\\ & (\text{利用}3^\circ: \|\phi^{(p)}(z)-c^{(p)}\|_p\le K,\forall z\in K(0,r))\\ \le &n r c_{q+1} +n^2\frac{1}{2!}r^2 c_{q+2}+\cdots+ n^{p-q-1}\frac{1}{(p-q-1)!}r^{p-q-1}c_{p-1}+n^{p-q}\frac{1}{(p-q)!}r^{p-q}(c_p+K)\\ \le & r n^{p-q} (c_{q+1}+ c_{q+2}+\cdots+c_{p-1}+c_p+K)\\ \end{aligned} \]

其中

\[c_s=\max_{\substack{1\le k\le m, \\ 1\le i_1,\cdots,i_s\le n}}|c^k_{i_1\cdots i_s}|. \]

因此, 我们有

\[\begin{equation}\tag{eq-5-27} \begin{aligned} \|\phi^{(q)}(z)-c^{(q)}\|_q\le & m^{1/2} n^{q/2} r n^{p-q} (c_{q+1}+ c_{q+2}+\cdots+c_{p-1}+c_p+K)\\ =&m^{1/2} n^{p-q/2} r (c_{q+1}+ c_{q+2}+\cdots+c_{p-1}+c_p+K).\\ (\text{从这里可以导出}&\rho_q=m^{1/2} n^{p-q/2} (c_{q+1}+ c_{q+2}+\cdots+c_{p-1}+c_p+K)) \end{aligned} \end{equation} \]

对于\(q=0\), 我们有

\[\|\phi(z)\|\le m^{1/2} n^{p} r (c_{1}+ c_{2}+\cdots+c_{p-1}+c_p+K)<R. \]

{\color{red}[这要放在{eq-determine-r}中!]}
因此对于\(\phi\in \mathfrak{R}\)\(z\in K(0,r)\), 我们有\(\phi[f(z)]\in K(0,R)\).
由此, \(T\)是良定义的.

Step 4. 证明\(T(\mathfrak{R})\subset \mathfrak{R}.\)

对于\(\forall \phi\in \mathfrak{R}\),

\[T(\phi)(z)=h(z,\phi[f(z)]). \]

\(1^\circ\) \(\phi\)\(\|z\|<r\)解析, \(f\)\(\|z\|<r\)解析, \(h\)\(\|z|\le r\)\(\|w\|_0\le R\)解析,
\(\|\phi[f(z)]\|_0\le R\)对于\(\|z\|\le r\), 于是\(h(z,\phi[f(z)])\)\(\|z\|<r\)解析.

\(\|z\|\le r\)上, \(\phi\)是连续的, \(f\)是连续的, \(h\)\(\|z|\le r\)\(\|w\|_0\le R\)上连续,
\(\|\phi[f(z)]\|_0\le R\)对于\(\|z\|\le r\), 于是\(h(z,\phi[f(z)])\)\(\|z\|\le r\)上连续.

\(2^\circ\) 既然\(h(z,\phi[f(z)])\)\(\|z\|<r\)上解析, 它有级数展开; 我们计算

\[T(\phi)(0)=h(0,0)=0, (\text{see}~{eq-5-5}) \]

\[T(\phi)^{q}(0)=H_q(0,0,c^{(1)},\cdots,c^{(q)})=c^{(q)},~~q=1,2,\cdots,p. \]

\(3^\circ\)

\[\begin{aligned} &\|T(\phi)^{(p)}(z)-c^{(p)}\|_p =\|H_p(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(p)}[f(z)])-H_p(0,0,c^{(1)},\cdots,c^{(p)})\|_p\\ \le & \|H_p(z,\phi[f(z)],\cdots,\phi^{(p)}[f(z)])-H_p(z,0,c^{(1)},\cdots,c^{(p)})\|_p\\ &+\|H_p(z,0,c^{(1)},\cdots,c^{(p)})-H_p(0,0,c^{(1)},\cdots,c^{(p)})\|_p, (\text{利用引理}{lemma-5-5})\\ \le & L \sum_{q=0}^{p-1}\|\phi^{(q)}[f(z)]-c^{(q)}\|_q+\theta \|\phi^{(p)}[f(z)]-c^{(p)}\|_p +\|H_p(z,0,c^{(1)},\cdots,c^{(p)})-H_p(0,0,c^{(1)},\cdots,c^{(p)})\|_p\\ & (\text{利用}3^\circ: \|\phi^{(p)}[f(z)]-c^{(p)}\|_p\le K;\text{and}~~(eq-5-27))\\ \le & L \sum_{q=0}^{p-1} m^{1/2} n^{p-q/2} r \left(\sum_{t=q+1}^{p} c_{t}+K\right)+\theta K + \|H_p(z,0,c^{(1)},\cdots,c^{(p)})-H_p(0,0,c^{(1)},\cdots,c^{(p)})\|_p\\ \end{aligned} \]

为了让上式\(\le K\), 我们可以让

\[\begin{aligned} &L \sum_{q=0}^{p-1} m^{1/2} n^{p-q/2} r \left(\sum_{t=q+1}^{p} c_{t}+K\right)\le \frac{1}{2}(1-\theta)K, \\ &\|H_p(z,0,c^{(1)},\cdots,c^{(p)})-H_p(0,0,c^{(1)},\cdots,c^{(p)})\|_p\le \frac{1}{2} (1-\theta)K. \end{aligned} \]

{\color{red}[这两个都要放到{eq-determin-r}中!]}
我们证明了\(T(\mathfrak{R})\subset \mathfrak{R}\).

Step 5. 证明\(T\)是压缩映射.

对于任意的\(\phi,\hat{\phi}\in \mathfrak{R}\), 我们有: \(\forall \|z\|\le r\),

\[\begin{equation*} \begin{aligned} &\|T(\phi)^{(p)}(z)-T(\hat{\phi})^{(p)}(z)\|_p\\ =&\|H_p(z,\phi[f(z)],\phi^{(1)}[f(z)],\cdots,\phi^{(p)}[f(z)])- H_p(z,\hat{\phi}[f(z)],\hat{\phi}^{(1)}[f(z)],\cdots,\hat{\phi}^{(p)}[f(z)])\|_p\\ \le & L\sum_{q=0}^{p-1}\|\phi^{(q)}[f(z)]-\hat{\phi}^{(q)}[f(z)]\|_q+\theta \|\phi^{(p)}[f(z)]-\hat{\phi}^{(p)}[f(z)]\|_p\\ \end{aligned} \end{equation*} \]

利用{Taylor-formula}, 我们可以得到

\[\begin{aligned} &\left|\frac{\partial^q\phi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}}- \frac{\partial^q\hat{\phi}^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}} \right|\\ =&\frac{1}{(p-q)!}\sum_{j_1\cdots j_{p-q}=1}^{n}\sup_{\|z\|\le r} \left| \frac{\partial^{(p)}\phi^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}\partial z_{j_1}\cdots \partial z_{j_{p-q}}} -\frac{\partial^{(p)} \hat{\phi}^k(z)}{\partial z_{i_1}\cdots \partial z_{i_q}\partial z_{j_1}\cdots \partial z_{j_{p-q}}} \right| \|z_{j_1}\cdots z_{j_{p-q}}\|\\ \le & \frac{1}{(p-q)!} r^{p-q} n^{p-q}\rho(\phi,\hat{\phi})\le r^{p-q} n^{p-q}\rho(\phi,\hat{\phi}). \end{aligned} \]

于是

\[\|\phi^{(q)}(z)-\hat{\phi}^{(q)}(z)\|_q\le m^{1/2} n^{p-q/2} r^{p-q} \rho(\phi,\hat{\phi}). \]

进而

\[\begin{equation*} \begin{aligned} &\|T(\phi)^{(p)}(z)-T(\hat{\phi})^{(p)}(z)\|_p \le L\sum_{q=0}^{p-1}m^{1/2} n^{p-q/2} r^{p-q} \rho(\phi,\hat{\phi}) +\theta \rho(\phi,\hat{\phi})\\ \le & \vartheta \rho(\phi,\hat{\phi}), ~~\left[ L\sum_{q=0}^{p-1}m^{1/2} n^{p-q/2} r^{p-q}+\theta\le \vartheta\right]. \end{aligned} \end{equation*} \]

{\color{red}(这一部分\([ L\sum_{q=0}^{p-1}m^{1/2} n^{p-q/2} r^{p-q}+\theta\le \vartheta]\)也需放在
{eq-determin-r}中!)}
证毕.

利用一个基本的手法我们可以弱化假设 (II),用下面的假设 (V) 替换假设 (II):

  • (V) \(\lambda_0 := \max_{1 \le i \le n} \|\lambda_i\| < 1.\)

其中 \(\lambda_i\)\(B\) 的特征值。

首先我们说明 (V) 是比 (II) 弱的:一方面,利用 \(\|B\|_* \ge \lambda_0\),我们知道 \(\|B\|_* < 1\) 蕴含 \(\lambda_0 < 1\);另一方面,我们可以很容易找到例子说明 \(\lambda_0 < 1\)\(\|B\|_* > 1\),例如:

\[B = \begin{pmatrix} \frac{1}{2} & 10\\ 0 & \frac{1}{2} \end{pmatrix}. \]

我们有

\[B^T (1,0)^T = \begin{pmatrix} \frac{1}{2} & 0\\ 10 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\\ 10 \end{pmatrix}, \]

\[\Rightarrow \|B^T(1,0)\|_2 = \sqrt{\frac{1}{4}+100} > 1 \Rightarrow \|B\|_* = \sup_{\|t\|=1,t\in \mathbb{R}^2} \|B^T t\|_2 > 1. \]

下面我们证明定理{theorem-5-1} 的弱化版本:这里我们取正整数 \(p\) 满足

\[\begin{equation}\tag{eq-determine-p} \|[a_{0,l}^k]\|^* \lambda_0^p < 1. \end{equation} \]

定理 (theorem-5-2)

假设 (I)(III)(IV)(V) 成立,则对于由 {eq-5-20} 确定的每一组 \(c^{(1)}, \cdots, c^{(p)}\),恰好存在唯一的一个函数 \(\phi\)\(z=0\) 的一个邻域内有定义且解析,满足方程 {eq-smajdor},使得

\[\begin{equation}\tag{eq-5-28} \phi(0) = 0, ~ \phi^{(q)} = c^{(q)}, ~ q = 1,2,\cdots,p. \end{equation} \]

证明:

利用引理{lem:1.1},对于一个固定的 \(\varepsilon > 0\) 满足 \(\lambda_0 + \varepsilon < 1\),我们可以找到一个非奇异矩阵 \(T\) 使得

\[\|T^{-1} BT\|_* < 1. \]

查看原方程 {eq-smajdor}:

\[\phi(z) = h(z, \phi[f(z)]). \]

我们可以做如下的变形:

\[\phi(Tz) = h(Tz, \phi[f(Tz)]) = h(Tz, \phi[TT^{-1} f(Tz)]). \]

\(\psi(z) = \phi(Tz)\)\(\hat{h}(z, w) = h(Tz, w)\)\(\hat{f}(z) = T^{-1} f(Tz)\),我们有

\[\begin{equation}\tag{eq-5-29} \psi(z) = \hat{h}(z, \psi[\hat{f}(z)]). \end{equation} \]

我们将对上述方程应用定理 {theorem-5-1}。为此,我们需要验证 (I)(II)(III)(IV) 成立。

(I) \(\hat{f}\) 使得 (III) 成立的变量范围是

\[z \in T^{-1}(K(0, r_0)). \]

(II)\(\hat{f}\) 变为

\[\left|\left| \frac{\partial \hat{f}_j(z)}{\partial z_i} \bigg|_{z=0}\right|\right|_* = \left|\left| \frac{\partial (T^{-1} f(Tz))_j}{\partial z_i} \bigg|_{z=0}\right|\right|_* = \left|\left| T^{-1} B T \right|\right|_* < 1. \]

(III) \(\hat{h}\) 使得 (I) 成立的变量范围是

\[z \in T^{-1}(K(0, r_0)),~~ w \in K(0, R_0. \]

(IV) 因为假设 (IV) 对于关于 \(\phi\) 的方程{eq-smajdor} 成立,即存在\(\phi(z) = (\phi^1(z), \cdots, \phi^m(z))\) 满足 {eq-smajdor},其中

\[\phi^k(z) = \sum_{\mu=1}^{\infty} \sum_{i_1 \cdots i_\mu=1}^{n} c^k_{i_1 \cdots i_{\mu}} z_{i_1} \cdots z_{i_{\mu}}. \]

我们可以很容易看到 \(\psi(z) = (\psi^1(z), \cdots, \psi^m(z))\) 满足上面的{eq-5-29},其中

\[\begin{equation} \tag{eq-5-30} \begin{aligned} \psi^k(z) &= \sum_{\mu=1}^{\infty} \sum_{j_1 \cdots j_\mu=1}^{n} \hat{c}^k_{j_1 \cdots j_{\mu}} z_{j_1} \cdots z_{j_{\mu}}, \\ \hat{c}^k_{j_1 \cdots j_{\mu}} &= \sum_{i_1 \cdots i_\mu=1}^{n} c_{i_1 \cdots i_{\mu}}^k t^{i_1}_{j_1} \cdots t^{i_\mu}_{j_\mu}. \end{aligned} \end{equation} \]

一个简单的推导:按照之前的约定 \([t_i^j]\) 的上标是行标,下标是列标。

\[(\hat{z}_1, \cdots, \hat{z}_n)^T = [t_i^j](z_1,\cdots,z_n)^T = \left(\sum_{i=1}^{n} t_i^1 z_i, \cdots, \sum_{i=1}^{n} t_i^n z_i\right)^T, \]

\[\begin{aligned} \psi^k(z) &= \phi^k(Tz) = \sum_{\mu=1}^{\infty} \sum_{i_1 \cdots i_\mu=1}^{n} c^k_{i_1 \cdots i_{\mu}} \left(\sum_{j_1=1}^{n} t_{j_1}^{i_1} z_{j_1}\right) \cdots \left(\sum_{j_\mu=1}^{n} t_{j_\mu}^{i_\mu} z_{j_\mu}\right) \\ &= \sum_{\mu=1}^{\infty} \sum_{i_1 \cdots i_\mu=1}^{n} c^k_{i_1 \cdots i_{\mu}} \left[\sum_{j_1 \cdots j_\mu=1}^{n} t_{j_1}^{i_1} \cdots t_{j_\mu}^{i_\mu} z_{j_1} \cdots z_{j_\mu}\right] \\ &= \sum_{\mu=1}^{\infty} \sum_{j_1 \cdots j_\mu=1}^{n} \left[\sum_{i_1 \cdots i_\mu=1}^{n} c^k_{i_1 \cdots i_{\mu}} t_{j_1}^{i_1} \cdots t_{j_\mu}^{i_\mu}\right] z_{j_1} \cdots z_{j_\mu}. \end{aligned} \]

由此,

\[\begin{equation} \tag{eq-5-31} \hat{c}^k_{j_1 \cdots j_{\mu}} = \sum_{i_1 \cdots i_\mu=1}^{n} c_{i_1 \cdots i_{\mu}}^k t^{i_1}_{j_1} \cdots t^{i_\mu}_{j_\mu}. \end{equation} \]

因为 \(T\) 是可逆的线性变换,所以由 {eq-5-31} 建立的 \(\hat{c}^k_{j_1 \cdots j_{\mu}}\)\(c^k_{j_1 \cdots j_{\mu}}\) 之间的对应是一一对应.

验证了 {\rm (I)(II)(III)(IV)},我们可以应用定理{theorem-5-1},从而得到方程{eq-5-29} 在 \(z=0\) 的一个邻域内有解析解 \(\psi\),满足:

\[\psi(0) = 0, ~ \psi^{(q)} = \hat{c}^{(q)}, ~ q = 1, 2, \cdots, p. \]

由此,我们得到了方程{eq-smajdor} 在 \(z=0\) 的某邻域内有唯一的局部解析解 \(\phi = \psi \circ T^{-1}\),满足

\[\phi(0) = 0, ~ \phi^{(q)} = c^{(q)}, ~ q = 1, 2, \cdots, p. \]

定理得证.

下面是定理{theorem-5-2} 的一个应用:

假设 \(h(z,w)\) 是下面类型的函数:

\[h: \mathbb{C}^n \times \mathbb{C}^m \to \mathbb{C} \]

它在 \((z,w) = (0,0)\) 的某个邻域内解析 [这意味着假设 {\bf (III)} 满足],并设 \(f(z)\) 满足假设 {\bf (I)(V)}。

一个 \(m\) 阶的方程

\[\begin{equation}\tag{eq-5-32} \varphi(z) = h(z, \varphi[f(z)], \cdots, \varphi[f^m(z)]), \end{equation} \]

其中的未知函数 \(\varphi(z)\) 是这种类型的:

\[\varphi: \mathbb{C}^n \to \mathbb{C}, \]

可以被约化为一个由 \(m\)\(1\) 阶方程组成的方程组:

\[\begin{equation}\tag{eq-5-33} \left\{ \begin{aligned} \varphi_1(z) &= h_1(z, \varphi_1[f(z)], \cdots, \varphi_{m-1}[f(z)]), \\ \varphi_2(z) &= \varphi_1[f(z)], \\ \cdots \\ \varphi_m(z) &= \varphi_{m-1}[f(z)], \end{aligned} \right. \end{equation} \]

它是一个形式为{eq-smajdor} 的方程:

\[\hat{\varphi}(z) = \begin{pmatrix} \varphi_1(z) \\ \varphi_2(z) \\ \cdots \\ \varphi_m(z) \end{pmatrix} = \begin{pmatrix} h_1(z, \varphi_1[f(z)], \cdots, \varphi_m[f(z)]) \\ \varphi_1[f(z)] \\ \cdots \\ \varphi_{m-1}[f(z)] \end{pmatrix} = h(z, \varphi_1[f(z)], \cdots, \varphi_m[f(z)]). \]

由此, 对应于{eq-smajdor}的\(h\)是:

\[h(z, w^1, \cdots) = \begin{pmatrix} h_1(z, w^1, \cdots, w^{m}) \\ w^1 \\ \cdots \\ w^{m-1} \end{pmatrix}. \]

从而,如果令

\[[a_{0,l}^k] = \frac{\partial h_k(0,0)}{\partial w^l}, \]

那么

\[a_{0,l}^1 = \frac{\partial h_1(0,0)}{\partial w^l}, ~~ a_{0,l}^k = \frac{\partial w^{k-1}}{\partial w_l} = \delta_{k-1,l} \quad (\text{Kronecker's delta}), ~ k = 2, \cdots, m. \]

假设方程{eq-5-32} 有一个形式级数解:

\[\begin{equation}\tag{eq-5-34} \varphi(z) = \sum_{\mu=1}^{\infty} \sum_{i_1 \cdots i_\mu=1}^{n} d_{i_1 \cdots i_\mu} z_{i_1} \cdots z_{i_\mu}, \end{equation} \]

[这意味着假设 {\bf (IV)} 满足],并设\(p\)是一个正整数满足{eq-determine-p},那么利用定理{theorem-5-2},我们可以得到

定理(theorem-5-3)

假设函数 \(f\) 满足 {\rm (I)(V)} 并设 \(h(z,w)\) 是一个在 \((z,w) = (0,0)\) 的某个邻域内解析的函数, \(h(0,0) = 0\)。那么对于在展开式{eq-5-34} 中的每一组 \(d_{j_1 \cdots j_q}, q = 1, 2, \cdots, p\),方程{eq-5-32} 在 \(z=0\) 的某个邻域内有唯一的局部解析解 \(\varphi\) 满足

\[\varphi(0) = 0, ~ \frac{\partial^q \varphi(z)}{\partial z_{j_1} \cdots \partial z_{j_q}} \bigg|_{z=0} = d_{j_1 \cdots j_q}, ~~ j_1, \cdots, j_q = 1, \cdots, n; ~ q = 1, 2, \cdots, p. \]

posted @ 2025-01-10 22:45  枫叶之影  阅读(39)  评论(0)    收藏  举报