线程并发

Java线程:并发协作-生产者消费者模型

对于多线程程序来说,不管任何编程语言,生产者和消费者模型都是最经典的。就像学习每一门编程语言一样,Hello World!都是最经典的例子。

 

实际上,准确说应该是“生产者-消费者-仓储”模型,离开了仓储,生产者消费者模型就显得没有说服力了。

对于此模型,应该明确一下几点:

1、生产者仅仅在仓储未满时候生产,仓满则停止生产。

2、消费者仅仅在仓储有产品时候才能消费,仓空则等待。

3、当消费者发现仓储没产品可消费时候会通知生产者生产。

4、生产者在生产出可消费产品时候,应该通知等待的消费者去消费。

 

此模型将要结合java.lang.Object的wait与notify、notifyAll方法来实现以上的需求。这是非常重要的。

 

/**
* Java线程:并发协作-生产者消费者模型
*
* @author leizhimin 2009-11-4 14:54:36
*/
publicclass Test {
        publicstaticvoid main(String[] args) {
                Godown godown = new Godown(30);
                Consumer c1 = new Consumer(50, godown);
                Consumer c2 = new Consumer(20, godown);
                Consumer c3 = new Consumer(30, godown);
                Producer p1 = new Producer(10, godown);
                Producer p2 = new Producer(10, godown);
                Producer p3 = new Producer(10, godown);
                Producer p4 = new Producer(10, godown);
                Producer p5 = new Producer(10, godown);
                Producer p6 = new Producer(10, godown);
                Producer p7 = new Producer(80, godown);

                c1.start();
                c2.start();
                c3.start();
                p1.start();
                p2.start();
                p3.start();
                p4.start();
                p5.start();
                p6.start();
                p7.start();
        }
}

/**
* 仓库
*/
class Godown {
        publicstaticfinalint max_size = 100;//最大库存量
        publicint curnum;    //当前库存量

        Godown() {
        }

        Godown(int curnum) {
                this.curnum = curnum;
        }

        /**
         * 生产指定数量的产品
         *
         * @param neednum
         */
        publicsynchronizedvoid produce(int neednum) {
                //测试是否需要生产
                while (neednum + curnum > max_size) {
                        System.out.println("要生产的产品数量" + neednum +"超过剩余库存量" + (max_size - curnum) +",暂时不能执行生产任务!");
                        try {
                                //当前的生产线程等待
                                wait();
                        } catch (InterruptedException e) {
                                e.printStackTrace();
                        }
                }
                //满足生产条件,则进行生产,这里简单的更改当前库存量
                curnum += neednum;
                System.out.println("已经生产了" + neednum +"个产品,现仓储量为" + curnum);
                //唤醒在此对象监视器上等待的所有线程
                notifyAll();
        }

        /**
         * 消费指定数量的产品
         *
         * @param neednum
         */
        publicsynchronizedvoid consume(int neednum) {
                //测试是否可消费
                while (curnum < neednum) {
                        try {
                                //当前的生产线程等待
                                wait();
                        } catch (InterruptedException e) {
                                e.printStackTrace();
                        }
                }
                //满足消费条件,则进行消费,这里简单的更改当前库存量
                curnum -= neednum;
                System.out.println("已经消费了" + neednum +"个产品,现仓储量为" + curnum);
                //唤醒在此对象监视器上等待的所有线程
                notifyAll();
        }
}

/**
* 生产者
*/
class Producer extends Thread {
        privateint neednum;                //生产产品的数量
        private Godown godown;            //仓库

        Producer(int neednum, Godown godown) {
                this.neednum = neednum;
                this.godown = godown;
        }

        publicvoid run() {
                //生产指定数量的产品
                godown.produce(neednum);
        }
}

/**
* 消费者
*/
class Consumer extends Thread {
        privateint neednum;                //生产产品的数量
        private Godown godown;            //仓库

        Consumer(int neednum, Godown godown) {
                this.neednum = neednum;
                this.godown = godown;
        }

        publicvoid run() {
                //消费指定数量的产品
                godown.consume(neednum);
        }
}

 

已经生产了10个产品,现仓储量为40
已经生产了10个产品,现仓储量为50
已经消费了50个产品,现仓储量为0
已经生产了80个产品,现仓储量为80
已经消费了30个产品,现仓储量为50
已经生产了10个产品,现仓储量为60
已经消费了20个产品,现仓储量为40
已经生产了10个产品,现仓储量为50
已经生产了10个产品,现仓储量为60
已经生产了10个产品,现仓储量为70

Process finished with exit code 0

 

说明:

对于本例,要说明的是当发现不能满足生产或者消费条件的时候,调用对象的wait方法,wait方法的作用是释放当前线程的所获得的锁,并调用对象的notifyAll()方法,通知(唤醒)该对象上其他等待线程,使得其继续执行。这样,整个生产者、消费者线程得以正确的协作执行。

notifyAll() 方法,起到的是一个通知作用,不释放锁,也不获取锁。只是告诉该对象上等待的线程“可以竞争执行了,都醒来去执行吧”。

 

本例仅仅是生产者消费者模型中最简单的一种表示,本例中,如果消费者消费的仓储量达不到满足,而又没有生产者,则程序会一直处于等待状态,这当然是不对的。实际上可以将此例进行修改,修改为,根据消费驱动生产,同时生产兼顾仓库,如果仓不满就生产,并对每次最大消费量做个限制,这样就不存在此问题了,当然这样的例子更复杂,更难以说明这样一个简单模型。

 

我喜欢简单的例子。

Java线程:并发协作-死锁

线程发生死锁可能性很小,即使看似可能发生死锁的代码,在运行时发生死锁的可能性也是小之又小。

 

发生死锁的原因一般是两个对象的锁相互等待造成的。

 

在《Java线程:线程的同步与锁》一文中,简述死锁的概念与简单例子,但是所给的例子是不完整的,这里给出一个完整的例子。

 

/**
* Java线程:并发协作-死锁
*
* @author Administrator 2009-11-4 22:06:13
*/
publicclass Test {
        publicstaticvoid main(String[] args) {
                DeadlockRisk dead = new DeadlockRisk();
                MyThread t1 = new MyThread(dead, 1, 2);
                MyThread t2 = new MyThread(dead, 3, 4);
                MyThread t3 = new MyThread(dead, 5, 6);
                MyThread t4 = new MyThread(dead, 7, 8);

                t1.start();
                t2.start();
                t3.start();
                t4.start();
        }

}

class MyThread extends Thread {
        private DeadlockRisk dead;
        privateint a, b;


        MyThread(DeadlockRisk dead, int a,int b) {
                this.dead = dead;
                this.a = a;
                this.b = b;
        }

        @Override
        publicvoid run() {
                dead.read();
                dead.write(a, b);
        }
}

class DeadlockRisk {
        privatestaticclass Resource {
                publicint value;
        }

        private Resource resourceA =new Resource();
        private Resource resourceB =new Resource();

        publicint read() {
                synchronized (resourceA) {
                        System.out.println("read():" + Thread.currentThread().getName() +"获取了resourceA的锁!");
                        synchronized (resourceB) {
                                System.out.println("read():" + Thread.currentThread().getName() +"获取了resourceB的锁!");
                                return resourceB.value + resourceA.value;
                        }
                }
        }

        publicvoid write(int a,int b) {
                synchronized (resourceB) {
                        System.out.println("write():" + Thread.currentThread().getName() +"获取了resourceA的锁!");
                        synchronized (resourceA) {
                                System.out.println("write():" + Thread.currentThread().getName() +"获取了resourceB的锁!");
                                resourceA.value = a;
                                resourceB.value = b;
                        }
                }
        }
}

 

下面死锁的情况发生了,真是难得一见啊:

 

 

Java线程:volatile关键字

 

Java™ 语言包含两种内在的同步机制:同步块(或方法)和 volatile变量。这两种机制的提出都是为了实现代码线程的安全性。其中 Volatile变量的同步性较差(但有时它更简单并且开销更低),而且其使用也更容易出错。

 

谈及到volatile关键字,不得不提的一篇文章是:《Java理论与实践:正确使用 Volatile 变量》,这篇文章对volatile关键字的用法做了相当精辟的阐述。

 

之所以要单独提出volatile这个不常用的关键字原因是这个关键字在高性能的多线程程序中也有很重要的用途,只是这个关键字用不好会出很多问题。

 

首先考虑一个问题,为什么变量需要volatile来修饰呢?

要搞清楚这个问题,首先应该明白计算机内部都做什么了。比如做了一个i++操作,计算机内部做了三次处理:读取-修改-写入。

同样,对于一个long型数据,做了个赋值操作,在32系统下需要经过两步才能完成,先修改低32位,然后修改高32位。

 

假想一下,当将以上的操作放到一个多线程环境下操作时候,有可能出现的问题,是这些步骤执行了一部分,而另外一个线程就已经引用了变量值,这样就导致了读取脏数据的问题。

 

通过这个设想,就不难理解volatile关键字了。

 

volatile可以用在任何变量前面,但不能用于final变量前面,因为final型的变量是禁止修改的。也不存在线程安全的问题。

 

更多的内容,请参看::《Java理论与实践:正确使用 Volatile 变量》一文,写得很好。

posted @ 2018-10-09 14:26  不起名字的博客用户  阅读(97)  评论(0)    收藏  举报