Python学习记录-代码调试
方法1 print()
不推荐使用
方法2 断言
凡是用print()来辅助查看的地方,都可以用断言(assert)来替代:
def foo(s):
n = int(s)
assert n != 0, 'n is zero!'
return 10 / n
def main():
foo('0')
assert的意思是,表达式n != 0应该是True,否则,根据程序运行的逻辑,后面的代码肯定会出错。
如果断言失败,assert语句本身就会抛出AssertionError:
$ python err.py
Traceback (most recent call last):
...
AssertionError: n is zero!
程序中如果到处充斥着assert,和print()相比也好不到哪去。不过,启动Python解释器时可以用-O参数来关闭assert:
$ python -O err.py
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
关闭后,你可以把所有的assert语句当成pass来看。
方法3 logging
把print()替换为logging是第3种方式,和assert比,logging不会抛出错误,而且可以输出到文件:
import logging
s = '0'
n = int(s)
logging.info('n = %d' % n)
print(10 / n)
logging.info()就可以输出一段文本。运行,发现除了ZeroDivisionError,没有任何信息。怎么回事?
别急,在import logging之后添加一行配置再试试:
import logging
logging.basicConfig(level=logging.INFO)
看到输出了:
$ python err.py
INFO:root:n = 0
Traceback (most recent call last):
File "err.py", line 8, in <module>
print(10 / n)
ZeroDivisionError: division by zero
这就是logging的好处,它允许你指定记录信息的级别,有debug,info,warning,error等几个级别,
当我们指定level=INFO时,logging.debug就不起作用了。
同理,指定level=WARNING后,debug和info就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。
logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件
方法4 pdb 单步调试
第4种方式是启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。
参考: https://www.liaoxuefeng.com/wiki/1016959663602400/1017602696742912
方法5 pdb.set_trace()

浙公网安备 33010602011771号