运用tensorflow下的数据准备,以mnist手写数据集为例
1 import tensorflow as tf 2 import matplotlib.pyplot as plt 3 import numpy as np 4 5 mnist = tf.keras.datasets.mnist 6 (x_trian,y_train), (x_test,y_test) = mnist.load_data() 7 8 ##显示其中的图像,并验证标签 9 image_index = 123 10 plt.inshow(x_train[image_index]),cmap='Greys') 11 plt.show() 12 print(y_train[image_index]) 13 14 ##扩大矩阵大小 15 print('没扩张前大小',x_train.shape) 16 x_train = np.pad(x_train,((0,0),(2,2),(2,2)), 'constant',constant_values= 0) 17 print('扩张后大小',x_train.shape) 18 19 ##换字符类型 20 x_train = x_train.astype('float32') 21 ##归一化 22 x_train /=255 23 ##重新配置通道 24 x_train = x_train.reshape(x_train.shape[0],32,32,1) 25 print(x_train.shape)
因为使用的net网络的输入是接受32*32的大小图像的,故要扩充。也要四维输入,所以需要升维。

浙公网安备 33010602011771号