LangExtract
LangExtract是一个 Python 库,利用大型语言模型(LLMs)从非结构化文本中提取结构化信息
安装
pip install langextract
import langextract as lx import textwrap # 1. 定义提示词 prompt = textwrap.dedent(""" Extract characters, emotions, and relationships in order of appearance. Use exact text for extractions. Do not paraphrase or overlap entities. Provide meaningful attributes for each entity to add context. """) # 2. 提供高质量示例 examples = [ lx.data.ExampleData( text="ROMEO. But soft! What light through yonder window breaks? It is the east, and Juliet is the sun.", extractions=[ lx.data.Extraction(extraction_class="character", extraction_text="ROMEO", attributes={"emotional_state": "wonder"}), lx.data.Extraction(extraction_class="emotion", extraction_text="But soft!", attributes={"feeling": "gentle awe"}), lx.data.Extraction(extraction_class="relationship", extraction_text="Juliet is the sun", attributes={"type": "metaphor"}), ], ) ] # 3. 对新文本进行抽取 input_text = "Lady Juliet gazed longingly at the stars, her heart aching for Romeo" result = lx.extract( text_or_documents=input_text, prompt_description=prompt, examples=examples, language_model_type=lx.inference.OllamaLanguageModel, model_id="qwen2.5:7b", model_url="http://192.168.0.220:11434", temperature=0.3, fence_output=False, use_schema_constraints=False ) for extraction in result.extractions: print(f"Class: {extraction.extraction_class}") print(f"Text: {extraction.extraction_text}") print(f"Attributes: {extraction.attributes}") print("\n✅ SUCCESS! Ollama is working with langextract") # 4. 保存并生成可视化报告 lx.io.save_annotated_documents([result], output_name="extraction_results.jsonl", output_dir=".") html_content = lx.visualize("extraction_results.jsonl") with open("visualization.html", "w", encoding="utf-8") as f: f.write(html_content)
生成的报告