import pandas as pd
df = pd.read_csv('iris.csv')
print(df.head())
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
print(X.shape, y.shape)
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
# 初始化随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100)
# 进行五折交叉验证
scores = cross_val_score(rf_classifier, X, y, cv=5)
print("Cross-validation scores:", scores)
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
rf_classifier.fit(X_train, y_train)
# 预测测试集
y_pred = rf_classifier.predict(X_test)
# 输出模型性能报告
print(classification_report(y_test, y_pred))
浙公网安备 33010602011771号