Loading

CF1572B. Xor of 3

题意

给出一个 \(01\) 序列,一次操作可以选择连续的三个数,把它们都变成三个数的异或和。问能否在 \(n\) 次以内全变成 \(0\),输出方案

题解

仔细研究发现,无论如何三个数的异或不会变,由此我们可以应该联想到前缀异或和, 同时如果所有异或和不为0, 无解。

然后, 假设我们操作的三个位置为\(i\), \(i+1\), \(i+2\), 设 \(s_i\) 表示前缀异或和。

那么可以发现操作等价于: \(s_i = s_{i+2}, s_{i+1} = s_{i-1}\)

显然, \(s_0 = 0,s_n = 0\), 所以如果当\(n\)为奇数时,一定有解。

\(n\)为偶数时, 偶数位一定可以全为0, 我们可以优先找到一个奇数位\(0\), 找不到无解

找到之后向两边扩展即可。 本题不要求操作最少。

代码

点击查看代码
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <iostream>
const int N = 2e5;
using namespace std;
 
vector<int > ans;
 
int t, n, a[N + 5], s[N + 5];
 
int main() {
	// freopen("t.in", "r", stdin);
	// cout <<1  << endl;
	scanf("%d", &t);
	while(t--) {		
		scanf("%d", &n);
		for(int i = 1; i <= n; ++i) {
			scanf("%d", a + i);
			s[i] = s[i - 1] ^ a[i];
		} 
		if (s[n]) {
			puts("NO");
			continue;
		}
		if (n % 2) {
			puts("YES");
			printf("%d\n", n - 1);
			for(int i = 1; i < n; i += 2)
				printf("%d ", i);
			for(int i = n - 2; i >= 1; i -= 2)
				printf("%d ", i);
			puts("");
		}
		else {
			// cout << "ok" << endl;
			ans.clear();
			int pos = -1;
			for(int i = 1; i <= n; i += 2)
				if (s[i] == 0) {
					pos = i;
					break;
				}
			if (pos == -1) {
				puts("NO");
				continue;
			}
			for(int i = pos - 2; i >= 1; i -= 2)
				ans.push_back(i);
			for(int i = pos + 1; i < n; i += 2)
				ans.push_back(i);
			for(int i = 1; i < n - 1; i += 2) 
				ans.push_back(i);
			printf("YES\n%d\n", ans.size());
			for(int i = 0; i < ans.size(); ++i)
				printf("%d ", ans[i]);
			puts("");
		}
	}
	return 0;
}
posted @ 2022-11-08 01:02  Absolutey  阅读(42)  评论(0)    收藏  举报