很朴素的方法,如果在区间[a,b]内有根,那么f(a)*f(b)<0
不难得到以下代码:
#include <iostream>
#include <memory>
using namespace std;
double f(int m, double c [], double x)
{
int i;
double p = c[m];
for (i = m; i > 0; i--)
p = p*x + c[i - 1];
return p;
}
int newton(double x0, double *r,
double c [], double cp [], int n,
double a, double b, double eps)
{
int MAX_ITERATION = 1000;
int i = 1;
double x1, x2, fp, eps2 = eps / 10.0;
x1 = x0;
while (i < MAX_ITERATION) {
x2 = f(n, c, x1);
fp = f(n - 1, cp, x1);
if ((fabs(fp)<0.000000001) && (fabs(x2)>1.0))
return 0;
x2 = x1 - x2 / fp;
if (fabs(x1 - x2) < eps2) {
if (x2<a || x2>b)
return 0;
*r = x2;
return 1;
}
x1 = x2;
i++;
}
return 0;
}
double Polynomial_Root(double c [], int n, double a, double b, double eps)
{
double *cp;
int i;
double root;
cp = (double *) calloc(n, sizeof(double) );
for (i = n - 1; i >= 0; i--) {
cp[i] = (i + 1)*c[i + 1];
}
if (a > b) {
root = a; a = b; b = root;
}
if ((!newton(a, &root, c, cp, n, a, b, eps)) &&
(!newton(b, &root, c, cp, n, a, b, eps)))
newton((a + b)*0.5, &root, c, cp, n, a, b, eps);
free(cp);
if (fabs(root) < eps)
return fabs(root);
else
return root;
}
int main()
{
double c[2] = { 1,2 };
int n = 1, a = -5, b = 5;
double eps = 1e-8;
double root = Polynomial_Root(c, n, a, b, eps);
cout << root << endl;
}
浙公网安备 33010602011771号