BZOJ - 4589 Hard Nim (FWT)

题目链接

FWT的板子题,思想不是很好理解,但代码还是非常好写的。

 1 #include<bits/stdc++.h>
 2 typedef long long ll;
 3 const ll mod=1e9+7,inv2=mod/2+1,N=2e5+10;
 4 void fwt(ll* a,int n,int f) {
 5     for(int d=1; d<n; d<<=1)
 6         for(int i=0; i<n; i+=d<<1)
 7             for(int j=0; j<d; ++j) {
 8                 ll x=a[i+j],y=a[i+j+d];
 9                 a[i+j]=(x+y)%mod,a[i+j+d]=(x-y)%mod;
10                 if(!~f)a[i+j]=a[i+j]*inv2%mod,a[i+j+d]=a[i+j+d]*inv2%mod;
11             }
12 }
13 ll Pow(ll x,ll p) {ll ret=1; for(; p; x=x*x%mod,p>>=1)if(p&1)ret=ret*x%mod; return ret;}
14 int n,m,pri[N];
15 ll a[N];
16 
17 int main() {
18     for(int i=2; i<N; ++i)for(int j=2; i*j<N; ++j)pri[i*j]=1;
19     while(~scanf("%d%d",&n,&m)) {
20         int n2=1;
21         for(; n2<=m; n2<<=1);
22         for(int i=0; i<n2; ++i)a[i]=0;
23         for(int i=2; i<=m; ++i)if(!pri[i])a[i]=1;
24         fwt(a,n2,1);
25         for(int i=0; i<n2; ++i)a[i]=Pow(a[i],n);
26         fwt(a,n2,-1);
27         printf("%lld\n",(a[0]+mod)%mod);
28     }
29     return 0;
30 }

 

posted @ 2019-01-18 09:55  jrltx  阅读(92)  评论(0编辑  收藏