LXR | KVM | PM | Time | Interrupt | Systems Performance | Bootup Optimization

ARMv8-M Star/M33异常处理

关键词:ARMv8-M、HardFault、MemManageFault、BusFault、UsageFault、Stack、XPSR、LR、addr2line等。

1. ARMv8-M异常类型及其详细解释

ARMv8-M Exception分为两类:预定义系统异常(0~15)和外部中断(16~16+N)。

各种异常的状态可以通过Status bit查看,获取更信息的异常原因:

CFSR是由UFSR、BFSR和MMFSR组成:

下面列举HFSR、MMFSR、BFSR、UFSR的详细解释。

1.1 HFSR

 

DEBUGEVT, bit [31] Debug event. Indicates when a debug event has occurred.
The possible values of this bit are:
No debug event has occurred.
Debug event has occurred. The Debug Fault Status Register has been updated.

FORCED, bit [30] Forced. Indicates that a fault with configurable priority has been escalated to a HardFault exception, because
it could not be made active, because of priority, or because it was disabled.
The possible values of this bit are:
No priority escalation has occurred.
Processor has escalated a configurable-priority exception to HardFault.

VECTTBL, bit [1] Vector table. Indicates when a fault has occurred because of a vector table read error on exception processing.
The possible values of this bit are:
No vector table read fault has occurred.
Vector table read fault has occurred.

1.2 MMFSR

 

MMARVALID, bit [7] MMFAR valid flag. Indicates validity of the MMFAR register.
The possible values of this bit are:
MMFAR content not valid.
MMFAR content valid.

MLSPERR, bit [5] MemManage lazy state preservation error flag. Records whether a MemManage fault occurred during FP lazy state preservation.
The possible values of this bit are:
No MemManage occurred.
MemManage occurred.

MSTKERR, bit [4] MemManage stacking error flag. Records whether a derived MemManage fault occurred during exception entry stacking.
The possible values of this bit are:
No derived MemManage occurred.
Derived MemManage occurred during exception entry.

MUNSTKERR, bit [3] MemManage unstacking error flag. Records whether a derived MemManage fault occurred during exception return unstacking.
The possible values of this bit are:
No derived MemManage fault occurred.
Derived MemManage fault occurred during excep

DACCVIOL, bit [1] Data access violation flag. Records whether a data access violation has occurred.
The possible values of this bit are:
No MemManage fault on data access has occurred.
MemManage fault on data access has occurred.

IACCVIOL, bit [0] Instruction access violation. Records whether an instruction related memory access violation has occurred.
The possible values of this bit are:
No MemManage fault on instruction access has occurred.
MemManage fault on instruction access has occurred.

1.3 BFSR

 

BFARVALID, bit [7] BFAR valid. Indicates validity of the contents of the BFAR register.
The possible values of this bit are:
BFAR content not valid.
BFAR content valid.

LSPERR, bit [5] Lazy state preservation error. Records whether a precise BusFault occurred during FP lazy state preservation.
The possible values of this bit are:
No BusFault occurred.
BusFault occurred.

STKERR, bit [4] Stack error. Records whether a precise derived BusFault occurred during exception entry stacking.
The possible values of this bit are:
No derived BusFault occurred.
Derived BusFault occurred during exception entry.

UNSTKERR, bit [3] Unstack error. Records whether a precise derived BusFault occurred during exception return unstacking.
The possible values of this bit are:
No derived BusFault occurred.
Derived BusFault occurred during exception return.

IMPRECISERR, bit [2] Imprecise error. Records whether an imprecise data access error has occurred.

The possible values of this bit are:
No imprecise data access error has occurred.
Imprecise data access error has occurred.

 

PRECISERR, bit [1] Precise error. Records whether a precise data access error has occurred.
The possible values of this bit are:
No precise data access error has occurred.
Precise data access error has occurred.

IBUSERR, bit [0]
Instruction bus error. Records whether a precise BusFault on an instruction prefetch has occurred.
The possible values of this bit are:
0
No BusFault on instruction prefetch has occurred.
1
A BusFault on an instruction prefetch has occurred.

1.4 UFSR

DIVBYZERO, bit [9] Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.

UNALIGNED, bit [8] Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.

STKOF, bit [4] Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.
NOCP, bit [3] No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.
INVPC, bit [2] Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.

INVSTATE, bit [1] Invalid state flag. Sticky flag indicating whether an EPSR.T, EPSR.IT, or FPSCR.LTPSIZE validity error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.

UNDEFINSTR, bit [0] UNDEFINED instruction flag. Sticky flag indicating whether an UNDEFINED instruction error has occurred.
The possible values of this bit are:
Error has not occurred.
Error has occurred.

2 ARMv8-M ARM中关于异常入口处理和压栈

在ARMv8-M ARM中介绍了异常发生时,硬件所做的一系列操作:

 

从中可以看出对R0-R3、R12、LR、XPSR、ReturnAddress进行了压栈操作,最后PC指向异常处理函数。

当异常发生时,压栈的内容和顺序是固定的:XPSR->ReturnAddress->LR->R12->R3->R2->R1->R0

这里的LR指的是异常的PC值,是真正的死亡前现场。ReturnAddress是处理器决定的异常后返回地址。

EXC_RETURN

EXC_RETURN代表异常入口时LR的值。

ARMv8-M规格书中关于EXC_RETURN定义如下:

 

PREFIX, bits [31:24] Prefix. Indicates that this is an EXC_RETURN value.This field reads as 0b11111111.

S, bit [6] Secure or Non-secure stack. 

DCRS, bit [5] Default callee register stacking.

FType, bit [4] Stack frame type. Extended stack frame. Standard stack frame.

Mode, bit [3] Mode. Indicates the Mode that was stacked from. Handler mode. Thread mode.

SPSEL, bit [2] Stack pointer selection. Main stack pointer. Process stack pointer.

ES, bit [0] Exception Secure. Non-secure. Secure.

RETPSR

当异常进入的时候,会将RETPSR的值压栈。

N, bit [31] Negative condition flag. Result is positive or zero. Result is negative.

Z, bit [30] Zero condition flag.Result is nonzero. Result is zero.

C, bit [29] Carry condition flag. No carry occurred, or last bit shifted was clear. Carry occurred, or last bit shifted was set.

V, bit [28] Overflow condition flag. Signed overflow did not occur. Signed overflow occurred.

Q, bit [27] Sticky saturation flag. Saturation or overflow has not occurred since bit was last cleared. Saturation or overflow has occurred since bit was last cleared.

T, bit [24] T32 state. Execution of any instruction generates an INVSTATE UsageFault. Instructions decoded as T32 instructions.

SFPA, bit [20] Secure Floating-point active.

GE, bits [19:16] Greater than or equal flags. 

SPREALIGN, bit [9]
The stack pointer was 8-byte aligned before exception entry began, no special handling is required on exception return.
The stack pointer was only 4-byte aligned before exception entry. The exception entry realigned SP to 8-byte alignment by increasing the stack frame size by 4-bytes.
Exception, bits [8:0] Exception number. 

3 异常Handler以及分析

异常的入口是异常向量表,根据异常号调用对应的处理函数:

__isr_vector:
    .long    __StackTop            /* Top of Stack */
    .long    Reset_Handler         /* 1. Reset Handler */
    .long    NMI_Handler           /* 2. NMI Handler */
    .long    HardFault_Handler     /* 3. Hard Fault Handler */
    .long    MemManage_Handler     /* 4. MPU Fault Handler */
    .long    BusFault_Handler      /* 5. Bus Fault Handler */
    .long    UsageFault_Handler    /* 6. Usage Fault Handler */
    .long    0                     /* 7. Reserved */
    .long    0                     /* 8. Reserved */
    .long    0                     /* 9. Reserved */
    .long    0                     /* 10. Reserved */
    .long    SVC_Handler           /* 11. SVCall Handler */
    .long    DebugMon_Handler      /* 12. Debug Monitor Handler */
    .long    0                     /* 13. Reserved */
    .long    PendSV_Handler        /* 14. PendSV Handler */
    .long    SysTick_Handler       /* 15. SysTick Handler */

    /* External interrupts */
    /* The interrupts 0 to 31 */
    .long    Default_IRQHandler /*16. External Interrupt 0*/
    .long    Default_IRQHandler

在进入Handler的时候,异常栈顶为包括R0~R3、R12、LR、ReturnAddress、RETPSR寄存器的内容。

下面的寄存器通过判断EXC_RETURN[2]来决定使用msp还是psp:

    asm volatile(
        " tst lr, #4                        \n"--测试EXC_RETURN[2]是否为1,即测试当前StackPointer是MSP(0)还是PSP(1)、
        " ite eq                            \n"--当EXC_RETURN[2]为0,则z=1;当EXC_RETURN[2]为1,则z=1。
        " mrseq r0, msp                     \n"--当EXC_RETURN[2]为0,将msp放入r0。
        " mrsne r0, psp                     \n"--当EXC_RETURN[2]为1,将psp放入r0。
        "b common_handler_c             \n"--
        : /* no output */
        : /* no input */
        : "r0" /* clobber */
    );

其中B和BL区别:

B Label ;程序无条件跳转到标号 Label 处执行。

BL Label ;当程序无条件跳转到标号 Label 处执行时,同时将当前的 PC 值保存到 R14 中。L ;用来区分 分支是否是有带返回的分支指令。

下面以HardFault为例,介绍代码和分析流程。

void HardFault_Handler(void)
{
    asm volatile(
            " tst lr, #4                        \n"
            " ite eq                            \n"
            " mrseq r0, msp                     \n"
            " mrsne r0, psp                     \n"
            "b hardfault_handler_c             \n"
            : /* no output */
            : /* no input */
            : "r0" /* clobber */
    );
}

void hardfault_handler_c(sContextStateFrame* regs)--传入的参数为msp的值。
{
    unsigned int hfsr = SCB->HFSR;

    star_stack_dump(regs);

    MSG("Cause of Hard Fault:\n");

    if(hfsr & SCB_HFSR_DEBUGEVT_Msk) {
        MSG("Debug event has occurred, ");

        unsigned dfsr = SCB->DFSR;
        if(dfsr & SCB_DFSR_PMU_Msk)
            MSG("PMU event.\n");
        if(dfsr & SCB_DFSR_EXTERNAL_Msk)
            MSG("External event.\n");
        if(dfsr & SCB_DFSR_VCATCH_Msk)
            MSG("Vector Catch event.\n");
        if(dfsr & SCB_DFSR_DWTTRAP_Msk)
            MSG("Watchpoint event.\n");
        if(dfsr & SCB_DFSR_BKPT_Msk)
            MSG("Breakpoint event.\n");
        if(dfsr & SCB_DFSR_HALTED_Msk)
            MSG("Halt or step event.\n");
    }

    if(hfsr & SCB_HFSR_FORCED_Msk) {
        MSG("Processor has escalated a configurable-priority exception to HardFault.\n");
        aon_system_reset();
    }

    if(hfsr & SCB_HFSR_VECTTBL_Msk) {
        MSG("Vector table read fault has occurred.\n");
        aon_system_reset();
    }
}

void star_stack_dump(sContextStateFrame* regs)
{
    unsigned int *stackPtr = NULL;

    MSG("ExceptionStack(%08x):\n", regs);--输出异常入栈信息:R0~R3、R12、LR、ReturnAddress、XPSR。
    MSG("R0 = %08x\n", regs->r0);
    MSG("R1 = %08x\n", regs->r1);
    MSG("R2 = %08x\n", regs->r2);
    MSG("R3 = %08x\n", regs->r3);
    MSG("R12 = %08x\n", regs->r12);
    MSG("LR = %08x\n", regs->lr);
    MSG("ReturnAddr = %08x\n", regs->return_address);
    MSG("PSR = %08x: N(%u) Z(%u) C(%u) V(%u) Q(%u) IT(%u) T(%u) SFPA(%u) GE(%u) SPRealign(%u) ISR(%u) \n", regs->xpsr.w,
        regs->xpsr.b.N,
        regs->xpsr.b.Z,
        regs->xpsr.b.C,
        regs->xpsr.b.V,
        regs->xpsr.b.Q,
        regs->xpsr.b.IT,
        regs->xpsr.b.T,
        regs->xpsr.b.SFPA,
        regs->xpsr.b.GE,
        regs->xpsr.b.SPREALIGN,
        regs->xpsr.b.ISR
        );--RETPSR的几种情况暂未分别分析。

    MSG("\nStack from 0x%08x in [StackTop(0x%08x), MSPLIM(0x%08x)]:\n", regs, &__StackTop,  __get_MSPLIM());
    for(stackPtr = (unsigned int *)regs; stackPtr < &__StackTop; stackPtr++ ) {--遍历输出栈内容,方便后续分析。
        MSG("0x%08x %08x\n", stackPtr, *stackPtr);
    }
}

触发产生异常:

void fault_test_by_trigger(void) {
    MSG("%s\n", __func__);
    SCB->SHCSR |= SCB_SHCSR_HARDFAULTPENDED_Msk;
//    SCB->SHCSR |= SCB_SHCSR_BUSFAULTPENDED_Msk;
//    SCB->SHCSR |= SCB_SHCSR_MEMFAULTPENDED_Msk;
//    SCB->SHCSR |= SCB_SHCSR_USGFAULTPENDED_Msk;
}

结果如下: 

fault_test_by_trigger
ExceptionStack(2003FFA8):
R0 = 00000007
R1 = 0000000A
R2 = E000ED00
R3 = 00270000
R12 = 00000000
LR = 000002E7
ReturnAddr = 000002F2
PSR = 69000000: N(0) Z(1) C(1) V(0) Q(1) IT(0) T(1) SFPA(0) GE(0) SPRealign(0) ISR(0) 

Stack from 0x2003FFA8 in [StackTop(0x2003FFF0), MSPLIM(0x2003F3F0)]:
0x2003FFA8 00000007
0x2003FFAC 0000000A
0x2003FFB0 E000ED00
0x2003FFB4 00270000
0x2003FFB8 00000000
0x2003FFBC 000002E7
0x2003FFC0 000002F2
0x2003FFC4 69000000--到此都为异常入栈内容。
0x2003FFC8 0000E4E0
0x2003FFCC 0000E4E0
0x2003FFD0 0000E4E0
0x2003FFD4 0000C0CC
0x2003FFD8 00000000
0x2003FFDC 00000000
0x2003FFE0 00000000
0x2003FFE4 00000000
0x2003FFE8 00000000
0x2003FFEC 0000B6C1
Cause of Hard Fault:

 从上述log可知三个地址0x000002E7、0x000002F2、0x0000B6C1。

 使用addrline工具分析对应符号表,

arm-linux-gnueabihf-addr2line -e main.elf -a -f 0x000002E7 0x000002F2 0x0000B6C1

结果如下:

0x000002e7
fault_test_by_trigger--异常栈中的LR,对应异常现场PC值。是导致问题产生的原因。
xxx.c:34
0x000002f2
main--这是异常退出后处理器PC指向的地方,即退出异常后将要执行的代码。
xxx.c:66
0x0000b6c1
Reset_Handler--栈回溯部分。
xxx.S:284

 基本可以得到函数调用关系。

 

参考文档:

ARM Cortex-M3/M4/M7 Hardfault异常分析》-相关寄存器、异常、异常栈、HardFault实例分析。

How to debug a HardFault on an ARM Cortex-M MCU》-HFSR、MMFSR、UFSR、BFSR类型错误,以及恢复栈信息并进行自动化调试。

GitHub - armink/CmBacktrace: Advanced fault backtrace library for ARM Cortex-M series MCU》:ARM Cortex-M 系列 MCU 错误追踪库。

posted on 2022-04-27 20:17  ArnoldLu  阅读(2943)  评论(0编辑  收藏  举报

导航