摘要:
FPN(feature pyramid networks) 是何凯明等作者提出的适用于多尺度目标检测算法。原来多数的 object detection 算法(比如 faster rcnn)都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。 阅读全文
FPN(feature pyramid networks) 是何凯明等作者提出的适用于多尺度目标检测算法。原来多数的 object detection 算法(比如 faster rcnn)都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。 阅读全文
posted @ 2022-12-16 14:14
嵌入式视觉
阅读(3114)
评论(0)
推荐(1)

浙公网安备 33010602011771号