二阶段目标检测网络-FPN 详解

本篇文章是论文阅读笔记和网络理解心得总结而来,部分资料和图参考论文和网络资料

论文背景

FPN(feature pyramid networks) 是何凯明等作者提出的适用于多尺度目标检测算法。原来多数的 object detection 算法(比如 faster rcnn)都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。

引言(Introduction)

4种金字塔结构

从上图可以看出,(a)使用图像金字塔构建特征金字塔。每个图像尺度上的特征都是独立计算的,速度很慢。(b)最近的检测系统选择(比如 Faster RCNN)只使用单一尺度特征进行更快的检测。(c)另一种方法是重用 ConvNet(卷积层)计算的金字塔特征层次结构(比如 SSD),就好像它是一个特征化的图像金字塔。(d)我们提出的特征金字塔网络(FPN)与(b)和(c)类似,但更准确。在该图中,特征映射用蓝色轮廓表示,较粗的轮廓表示语义上较强的特征

特征金字塔网络 FPN

作者提出的 FPN 结构如下图:这个金字塔结构包括一个自底向上的线路,一个自顶向下的线路和横向连接(lateral connections)

fpn结构示意图

自底向上其实就是卷积网络的前向过程。在前向过程中,feature map 的大小在经过某些层后会改变,而在经过其他一些层的时候不会改变,作者将不改变 feature map 大小的层归为一个 stage,因此这里金字塔结构中每次抽取的特征都是每个 stage 的最后一个层的输出。在代码中我们可以看到共有C1、C2、C3、C4、C5五个特征图,C1C2 的特征图大小是一样的,所以,FPN 的建立也是基于从 C2C5 这四个特征层上。

自顶向下的过程采用上采样(upsampling)进行,而横向连接则是将上采样的结果和自底向上生成的相同大小的 feature map 进行融合(merge)。在融合之后还会再采用 3*3 的卷积核对每个融合结果进行卷积,目的是消除上采样的混叠效应(aliasing effect)。并假设生成的 feature map 结果是 P2,P3,P4,P5,和原来自底向上的卷积结果 C2,C3,C4,C5一一对应。

这里贴一个 ResNet 的结构图:论文中作者采用 conv2_x,conv3_x,conv4_x 和 conv5_x 的输出,对应 C1,C2,C3,C4,C5,因此类似 Conv2就可以看做一个stage。

resnet结构参数图

FPN网络建立

这里自己没有总结,因为已经有篇博文总结得很不错了,在这

通过 ResNet50 网络,得到图片不同阶段的特征图,最后利用 C2,C3,C4,C5 建立特征图金字塔结构:

  1. 将 C5 经过 256 个 1*1 的卷积核操作得到:32*32*256,记为 P5;
  2. 将 P5 进行步长为 2 的上采样得到 64*64*256,再与 C4 经过的 256 个 1*1 卷积核操作得到的结果相加,得到 64*64*256,记为 P4;
  3. 将 P4 进行步长为 2 的上采样得到 128*128*256,再与 C3 经过的 256 个 1*1 卷积核操作得到的结果相加,得到 128*128*256,记为 P3;
  4. 将 P3 进行步长为 2 的上采样得到 256*256*256,再与 C2 经过的 256 个 1*1 卷积核操作得到的结果相加,得到 256*256*256,记为 P2;
  5. 将 P5 进行步长为 2 的最大池化操作得到:16*16*256,记为 P6;

结合从 P2 到 P6 特征图的大小,如果原图大小 1024*1024, 那各个特征图对应到原图的步长依次为 [P2,P3,P4,P5,P6]=>[4,8,16,32,64]。

Anchor锚框生成规则

Faster RCNN 采用 FPN 的网络作 backbone 后,锚框的生成规则也会有所改变。基于上一步得到的特征图 [P2,P3,P4,P5,P6],再介绍下采用 FPN 的 Faster RCNN(或者 Mask RCNN)网络中 Anchor 锚框的生成,根据源码中介绍的规则,与之前 Faster-RCNN 中的生成规则有一点差别。

  1. 遍历 P2 到 P6 这五个特征层,以每个特征图上的每个像素点都生成 Anchor 锚框;
  2. 以 P2 层为例,P2 层的特征图大小为 256*256,相对于原图的步长为4,这样 P2上的每个像素点都可以生成一个基于坐标数组 [0,0,3,3] 即 4*4 面积为 16 大小的Anchor锚框,当然,可以设置一个比例 SCALE,将这个基础的锚框放大或者缩小,比如,这里设置 P2 层对应的缩放比例为 16,那边生成的锚框大小就是长和宽都扩大16倍,从 4*4 变成 64*64,面积从 16 变成 4096,当然在保证面积不变的前提下,长宽比可以变换为 32*128、64*64 或 128*32,这样以长、宽比率 RATIO = [0.5,1,2] 完成了三种变换,这样一个像素点都可以生成3个Anchor锚框。在 Faster-RCNN 中可以将 Anchor scale 也可以设置为多个值,而在MasK RCNN 中则是每一特征层只对应着一个 Anchor scale即对应着上述所设置的 16
  3. P2 层每个像素点位中心,对应到原图上,则可生成 256*256*3(长宽三种变换) = 196608 个锚框;
  4. P3 层每个像素点为中心,对应到原图上,则可生成 128*128*3 = 49152 个锚框;
  5. P4 层每个像素点为中心,对应到原图上,则可生成 64*64*3 = 12288 个锚框;
  6. P5 层每个像素点为中心,对应到原图上,则生成 32*32*3 = 3072 个锚框;
  7. P6 层每个像素点为中心,对应到原图上,则生成 16*16*3 = 768 个锚框。

从 P2 到 P6 层一共可以在原图上生成 \(196608 + 49152 + 12288 + 3072 + 768 = 261888\)Anchor 锚框。

实验

看看加入FPN 的 RPN 网络的有效性,如下表 Table1。网络这些结果都是基于 ResNet-50。评价标准采用 AR,AR 表示 Average Recall,AR 右上角的 100 表示每张图像有 100 个 anchor,AR 的右下角 s,m,l 表示 COCO 数据集中 object 的大小分别是小,中,大。feature 列的大括号 {} 表示每层独立预测。

对比试验

从(a)(b)(c)的对比可以看出 FPN 的作用确实很明显。另外(a)和(b)的对比可以看出高层特征并非比低一层的特征有效。

(d)表示只有横向连接,而没有自顶向下的过程,也就是仅仅对自底向上(bottom-up)的每一层结果做一个 1*1 的横向连接和 3*3 的卷积得到最终的结果,有点像 Fig1 的(b)。从 feature 列可以看出预测还是分层独立的。作者推测(d)的结果并不好的原因在于在自底向上的不同层之间的 semantic gaps 比较大。

(e)表示有自顶向下的过程,但是没有横向连接,即向下过程没有融合原来的特征。这样效果也不好的原因在于目标的 location 特征在经过多次降采样和上采样过程后变得更加不准确。

(f)采用 finest level 层做预测(参考 Fig2 的上面那个结构),即经过多次特征上采样和融合到最后一步生成的特征用于预测,主要是证明金字塔分层独立预测的表达能力。显然 finest level 的效果不如 FPN 好,原因在于 PRN 网络是一个窗口大小固定的滑动窗口检测器,因此在金字塔的不同层滑动可以增加其对尺度变化的鲁棒性。另外(f)有更多的 anchor,说明增加 anchor 的数量并不能有效提高准确率

Figure2

代码解读

这里给出一个基于 PytorchFPN 网络的代码,来自这里

## ResNet的block
class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )
    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out
class FPN(nn.Module):
    def __init__(self, block, num_blocks):
        super(FPN, self).__init__()
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        # Bottom-up layers, backbone of the network
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        # Top layer
        # 我们需要在C5后面接一个1x1, 256 conv,得到金字塔最顶端的feature
        self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) # Reduce channels
        # Smooth layers
        # 这个是上面引文中提到的抗aliasing的3x3卷积
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        # Lateral layers
        # 为了匹配channel dimension引入的1x1卷积
        # 注意这些backbone之外的extra conv,输出都是256 channel
        self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)
    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)
    ## FPN的lateral connection部分: upsample以后,element-wise相加
    def _upsample_add(self, x, y):
        '''Upsample and add two feature maps.
        Args:
          x: (Variable) top feature map to be upsampled.
          y: (Variable) lateral feature map.
        Returns:
          (Variable) added feature map.
        Note in PyTorch, when input size is odd, the upsampled feature map
        with `F.upsample(..., scale_factor=2, mode='nearest')`
        maybe not equal to the lateral feature map size.
        e.g.
        original input size: [N,_,15,15] ->
        conv2d feature map size: [N,_,8,8] ->
        upsampled feature map size: [N,_,16,16]
        So we choose bilinear upsample which supports arbitrary output sizes.
        '''
        _,_,H,W = y.size()
        return F.upsample(x, size=(H,W), mode='bilinear') + y
    def forward(self, x):
        # Bottom-up
        c1 = F.relu(self.bn1(self.conv1(x)))
        c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1)
        c2 = self.layer1(c1)
        c3 = self.layer2(c2)
        c4 = self.layer3(c3)
        c5 = self.layer4(c4)
        # Top-down
        # P5: 金字塔最顶上的feature
        p5 = self.toplayer(c5)
        # P4: 上一层 p5 + 侧边来的 c4
        # 其余同理
        p4 = self._upsample_add(p5, self.latlayer1(c4))
        p3 = self._upsample_add(p4, self.latlayer2(c3))
        p2 = self._upsample_add(p3, self.latlayer3(c2))
        # Smooth
        # 输出做一下smooth
        p4 = self.smooth1(p4)
        p3 = self.smooth2(p3)
        p2 = self.smooth3(p2)
        return p2, p3, p4, p5

参考资料

文章首发于我的 github 仓库-cv算法工程师成长之路,欢迎关注我的公众号-嵌入式视觉。
本人水平有限,文章如有问题,欢迎及时指出。如果看完文章有所收获,一定要先点赞后收藏。毕竟,赠人玫瑰,手有余香。

posted @ 2022-12-16 14:14  嵌入式视觉  阅读(1117)  评论(0编辑  收藏  举报