Prometheus(一)

官网:https://prometheus.io/

一、基于Operator和二进制安装prometheus环境

1.1 Operator部署

operator部署是基于已经编写好的yaml文件,可以将prometheus server、altermanager、grafana、node-exporter等组件一键批量部署。

前置条件:完成部署kubernetes

https://github.com/prometheus-operator/kube-prometheus

1.1.1 下载项目文件

# 下载并解压
wget https://github.com/prometheus-operator/kube-prometheus/archive/refs/heads/main.zip
unzip main.zip 
cd kube-prometheus-main/manifests

1.1.2 查看对应yaml文件所需镜像

因部分镜像无法直接,需提前下载

[root@k8s-deploy manifests]#grep -R 'image: ' ./*
./alertmanager-alertmanager.yaml:  image: quay.io/prometheus/alertmanager:v0.25.0
./blackboxExporter-deployment.yaml:        image: quay.io/prometheus/blackbox-exporter:v0.23.0
./blackboxExporter-deployment.yaml:        image: jimmidyson/configmap-reload:v0.5.0
./blackboxExporter-deployment.yaml:        image: quay.io/brancz/kube-rbac-proxy:v0.14.0
./grafana-deployment.yaml:        image: grafana/grafana:9.3.6
./kubeStateMetrics-deployment.yaml:        image: registry.k8s.io/kube-state-metrics/kube-state-metrics:v2.8.0
./kubeStateMetrics-deployment.yaml:        image: quay.io/brancz/kube-rbac-proxy:v0.14.0
./kubeStateMetrics-deployment.yaml:        image: quay.io/brancz/kube-rbac-proxy:v0.14.0
./nodeExporter-daemonset.yaml:        image: quay.io/prometheus/node-exporter:v1.5.0
./nodeExporter-daemonset.yaml:        image: quay.io/brancz/kube-rbac-proxy:v0.14.0
./prometheus-prometheus.yaml:  image: quay.io/prometheus/prometheus:v2.42.0
./prometheusAdapter-deployment.yaml:        image: registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.10.0
./prometheusOperator-deployment.yaml:        image: quay.io/prometheus-operator/prometheus-operator:v0.63.0
./prometheusOperator-deployment.yaml:        image: quay.io/brancz/kube-rbac-proxy:v0.14.0

1.1.3 下载镜像

docker pull grafana/grafana:9.3.6
docker pull jimmidyson/configmap-reload:v0.5.0
docker pull quay.io/brancz/kube-rbac-proxy:v0.14.0
docker pull quay.io/prometheus/alertmanager:v0.25.0
docker pull quay.io/prometheus/blackbox-exporter:v0.23.0
docker pull quay.io/prometheus/node-exporter:v1.5.0
docker pull quay.io/prometheus/prometheus:v2.42.0
docker pull quay.io/prometheus-operator/prometheus-operator:v0.63.0
docker pull registry.k8s.io/kube-state-metrics/kube-state-metrics:v2.8.0
docker pull registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.10.0

# 若部分镜像无法直接下载,可通过docker hub搜索同一镜像进行下载
docker pull bitnami/kube-state-metrics:2.8.0
docker pull v5cn/prometheus-adapter:v0.10.0
#docker pull bitnami/kube-rbac-proxy:0.14.0

1.1.4 上传镜像至本地harbor仓库

# 根据实际下载镜像进行打tag
docker tag grafana/grafana:9.3.6 harbor.chu.net/baseimages/grafana:9.3.6
docker tag jimmidyson/configmap-reload:v0.5.0 harbor.chu.net/baseimages/configmap-reload:v0.5.0
docker tag quay.io/brancz/kube-rbac-proxy:v0.14.0 harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0
docker tag quay.io/prometheus/alertmanager:v0.25.0 harbor.chu.net/baseimages/alertmanager:v0.25.0
docker tag quay.io/prometheus/blackbox-exporter:v0.23.0 harbor.chu.net/baseimages/blackbox-exporter:v0.23.0
docker tag quay.io/prometheus/node-exporter:v1.5.0 harbor.chu.net/baseimages/node-exporter:v1.5.0
docker tag quay.io/prometheus/prometheus:v2.42.0 harbor.chu.net/baseimages/prometheus:v2.42.0
docker tag quay.io/prometheus-operator/prometheus-operator:v0.63.0 harbor.chu.net/baseimages/prometheus-operator:v0.63.0
## 若镜像无法下载,使用代替镜像
#docker tag registry.k8s.io/kube-state-metrics/kube-state-metrics:v2.8.0 harbor.chu.net/baseimages/kube-state-metrics:v2.8.0
#docker tag registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.10.0 harbor.chu.net/baseimages/prometheus-adapter:v0.10.0
docker tag bitnami/kube-state-metrics:2.8.0 harbor.chu.net/baseimages/kube-state-metrics:v2.8.0
docker tag v5cn/prometheus-adapter:v0.10.0 harbor.chu.net/baseimages/prometheus-adapter:v0.10.0


# 上传镜像
docker push harbor.chu.net/baseimages/grafana:9.3.6
docker push harbor.chu.net/baseimages/configmap-reload:v0.5.0
docker push harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0
docker push harbor.chu.net/baseimages/alertmanager:v0.25.0
docker push harbor.chu.net/baseimages/blackbox-exporter:v0.23.0
docker push harbor.chu.net/baseimages/node-exporter:v1.5.0
docker push harbor.chu.net/baseimages/prometheus:v2.42.0
docker push harbor.chu.net/baseimages/prometheus-operator:v0.63.0
docker push harbor.chu.net/baseimages/kube-state-metrics:v2.8.0
docker push harbor.chu.net/baseimages/prometheus-adapter:v0.10.0

1.1.5 修改yaml文件镜像名称

sed -i 's@quay.io/prometheus/alertmanager:v0.25.0@harbor.chu.net/baseimages/alertmanager:v0.25.0@g' alertmanager-alertmanager.yaml
sed -i 's@quay.io/prometheus/blackbox-exporter:v0.23.0@harbor.chu.net/baseimages/blackbox-exporter:v0.23.0@g' blackboxExporter-deployment.yaml
sed -i 's@jimmidyson/configmap-reload:v0.5.0@harbor.chu.net/baseimages/configmap-reload:v0.5.0@g' blackboxExporter-deployment.yaml
sed -i 's@quay.io/brancz/kube-rbac-proxy:v0.14.0@harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0@g' blackboxExporter-deployment.yaml
sed -i 's@grafana/grafana:9.3.6@harbor.chu.net/baseimages/grafana:9.3.6@g' grafana-deployment.yaml
sed -i 's@registry.k8s.io/kube-state-metrics/kube-state-metrics:v2.8.0@harbor.chu.net/baseimages/kube-state-metrics:v2.8.0@g' kubeStateMetrics-deployment.yaml
sed -i 's@quay.io/brancz/kube-rbac-proxy:v0.14.0@harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0@g' kubeStateMetrics-deployment.yaml
sed -i 's@quay.io/prometheus/node-exporter:v1.5.0@harbor.chu.net/baseimages/node-exporter:v1.5.0@g' nodeExporter-daemonset.yaml
sed -i 's@quay.io/brancz/kube-rbac-proxy:v0.14.0@harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0@g' nodeExporter-daemonset.yaml
sed -i 's@quay.io/prometheus/prometheus:v2.42.0@harbor.chu.net/baseimages/prometheus:v2.42.0@g' prometheus-prometheus.yaml
sed -i 's@registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.10.0@harbor.chu.net/baseimages/prometheus-adapter:v0.10.0@g' prometheusAdapter-deployment.yaml
sed -i 's@quay.io/prometheus-operator/prometheus-operator:v0.63.0@harbor.chu.net/baseimages/prometheus-operator:v0.63.0@g' prometheusOperator-deployment.yaml
sed -i 's@quay.io/brancz/kube-rbac-proxy:v0.14.0@harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0@g' prometheusOperator-deployment.yaml

查看修改后镜像

[root@k8s-deploy manifests]#grep -R 'image: ' ./*
./alertmanager-alertmanager.yaml:  image: harbor.chu.net/baseimages/alertmanager:v0.25.0
./blackboxExporter-deployment.yaml:        image: harbor.chu.net/baseimages/blackbox-exporter:v0.23.0
./blackboxExporter-deployment.yaml:        image: harbor.chu.net/baseimages/configmap-reload:v0.5.0
./blackboxExporter-deployment.yaml:        image: harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0
./grafana-deployment.yaml:        image: harbor.chu.net/baseimages/grafana:9.3.6
./kubeStateMetrics-deployment.yaml:        image: harbor.chu.net/baseimages/kube-state-metrics:v2.8.0
./kubeStateMetrics-deployment.yaml:        image: harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0
./kubeStateMetrics-deployment.yaml:        image: harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0
./nodeExporter-daemonset.yaml:        image: harbor.chu.net/baseimages/node-exporter:v1.5.0
./nodeExporter-daemonset.yaml:        image: harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0
./prometheus-prometheus.yaml:  image: harbor.chu.net/baseimages/prometheus:v2.42.0
./prometheusAdapter-deployment.yaml:        image: harbor.chu.net/baseimages/prometheus-adapter:v0.10.0
./prometheusOperator-deployment.yaml:        image: harbor.chu.net/baseimages/prometheus-operator:v0.63.0
./prometheusOperator-deployment.yaml:        image: harbor.chu.net/baseimages/kube-rbac-proxy:v0.14.0

1.1.6 执行创建

# 先创建资源
kubectl apply --server-side -f setup/
# 创建服务
kubectl apply -f ./

查看pod状态

[root@k8s-deploy manifests]#kubectl get pod -n monitoring
NAME                                   READY   STATUS    RESTARTS      AGE
alertmanager-main-0                    2/2     Running   1 (27s ago)   51s
alertmanager-main-1                    2/2     Running   1 (45s ago)   51s
alertmanager-main-2                    2/2     Running   1 (46s ago)   51s
blackbox-exporter-85f8d5786b-pp4sc     3/3     Running   0             70s
grafana-ddfb4c79b-5l2sx                1/1     Running   0             67s
kube-state-metrics-5768c678b8-9wgrp    3/3     Running   0             65s
node-exporter-6glzk                    2/2     Running   0             65s
node-exporter-85xbk                    2/2     Running   0             65s
node-exporter-98gt7                    2/2     Running   0             65s
node-exporter-lx6cl                    2/2     Running   0             65s
node-exporter-m74nh                    2/2     Running   0             65s
node-exporter-x9q8m                    2/2     Running   0             65s
prometheus-adapter-856b98ffc5-8nn69    1/1     Running   0             62s
prometheus-adapter-856b98ffc5-mmmr4    1/1     Running   0             62s
prometheus-k8s-0                       2/2     Running   0             49s
prometheus-k8s-1                       2/2     Running   0             49s
prometheus-operator-5c7945d6cd-rznx7   2/2     Running   0             61s

查看service,默认为ClusterIP

[root@k8s-deploy manifests]#kubectl get svc -n monitoring
NAME                    TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                      AGE
alertmanager-main       ClusterIP   10.100.37.77     <none>        9093/TCP,8080/TCP            93s
alertmanager-operated   ClusterIP   None             <none>        9093/TCP,9094/TCP,9094/UDP   74s
blackbox-exporter       ClusterIP   10.100.23.226    <none>        9115/TCP,19115/TCP           92s
grafana                 ClusterIP   10.100.165.17    <none>        3000/TCP                     89s
kube-state-metrics      ClusterIP   None             <none>        8443/TCP,9443/TCP            88s
node-exporter           ClusterIP   None             <none>        9100/TCP                     87s
prometheus-adapter      ClusterIP   10.100.20.101    <none>        443/TCP                      84s
prometheus-k8s          ClusterIP   10.100.244.224   <none>        9090/TCP,8080/TCP            85s
prometheus-operated     ClusterIP   None             <none>        9090/TCP                     71s
prometheus-operator     ClusterIP   None             <none>        8443/TCP                     83s

默认已设置相关网络策略,可先删除相关策略,后续可根据实际需求进行修改调整

[root@k8s-deploy manifests]#for i in `ls |grep network`;do kubectl delete -f $i;done
networkpolicy.networking.k8s.io "alertmanager-main" deleted
networkpolicy.networking.k8s.io "blackbox-exporter" deleted
networkpolicy.networking.k8s.io "grafana" deleted
networkpolicy.networking.k8s.io "kube-state-metrics" deleted
networkpolicy.networking.k8s.io "node-exporter" deleted
networkpolicy.networking.k8s.io "prometheus-k8s" deleted
networkpolicy.networking.k8s.io "prometheus-adapter" deleted
networkpolicy.networking.k8s.io "prometheus-operator" deleted

1.1.7 验证Prometheus Web页面

客户端浏览器访问,需将prometheus-service.yaml​文件中service type更改为NodePort

apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/component: prometheus
    app.kubernetes.io/instance: k8s
    app.kubernetes.io/name: prometheus
    app.kubernetes.io/part-of: kube-prometheus
    app.kubernetes.io/version: 2.42.0
  name: prometheus-k8s
  namespace: monitoring
spec:
  type: NodePort		# 添加NodePort类型
  ports:
  - name: web
    port: 9090
    targetPort: web
    nodePort: 39090		# 设置端口号
  - name: reloader-web
    port: 8080
    targetPort: reloader-web
    nodePort: 38080		# 设置端口号
  selector:
    app.kubernetes.io/component: prometheus
    app.kubernetes.io/instance: k8s
    app.kubernetes.io/name: prometheus
    app.kubernetes.io/part-of: kube-prometheus
  sessionAffinity: ClientIP

更新service,查看prometheus-k8s​ 暴露node端口号

[root@k8s-deploy manifests]#kubectl apply -f prometheus-service.yaml 

[root@k8s-deploy manifests]#kubectl get svc -n monitoring|grep prometheus
prometheus-adapter      ClusterIP   10.100.20.101    <none>        443/TCP                         15m
prometheus-k8s          NodePort    10.100.244.224   <none>        9090:39090/TCP,8080:38080/TCP   15m
prometheus-operated     ClusterIP   None             <none>        9090/TCP                        15m
prometheus-operator     ClusterIP   None             <none>        8443/TCP                        15m

浏览器访问

查看Status

1.1.8 验证grafana Web页面

客户端浏览器访问,需将prometheus-service.yaml​文件中service type更改为NodePort

apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/component: grafana
    app.kubernetes.io/name: grafana
    app.kubernetes.io/part-of: kube-prometheus
    app.kubernetes.io/version: 9.3.6
  name: grafana
  namespace: monitoring
spec:
  type: NodePort			# 添加NodePort类型
  ports:
  - name: http
    port: 3000
    targetPort: http
    nodePort: 33000			# 设置端口号
  selector:
    app.kubernetes.io/component: grafana
    app.kubernetes.io/name: grafana
    app.kubernetes.io/part-of: kube-prometheus

更新service

kubectl apply -f grafana-service.yaml

[root@k8s-deploy manifests]#kubectl get svc -n monitoring|grep grafa
grafana                 NodePort    10.100.165.17    <none>        3000:33000/TCP                  44m

浏览器访问,默认用户名、密码(admin:admin)

进入首页

1.2 二进制部署

https://github.com/prometheus

# prometheus部署在k8s集群服务器上
prometheus-server1/k8s-master1 10.0.0.11

1.2.1 下载prometheus server二进制程序

下载地址:https://github.com/prometheus/prometheus/releases

mkdir /apps
cd /apps
wget https://github.com/prometheus/prometheus/releases/download/v2.40.7/prometheus-2.40.7.linux-amd64.tar.gz
tar -xvf prometheus-2.40.7.linux-amd64.tar.gz
ln -s /apps/prometheus-2.40.7.linux-amd64 /apps/prometheus

1.2.2 启动prometheus服务

  1. 创建service文件
cat >>/etc/systemd/system/prometheus.service <<EOF
[Unit]
Description=Prometheus Server
Documentation=https://prometheus.io/docs/introduction/overview/
After=network.target

[Service]
Restart=on-failure
WorkingDirectory=/apps/prometheus/
ExecStart=/apps/prometheus/prometheus   --config.file=/apps/prometheus/prometheus.yml --web.enable-lifecycle

[Install]
WantedBy=multi-user.target
EOF

说明--web.enable-lifecycle​表示动态加载配置,可以用命令 curl -X POST http://localhost:9090/-/reload​ 重新加载配置文件

prometheus启动参数配置参考:https://www.cnblogs.com/lifuqiang/articles/17007950.html

  1. 启动服务
systemctl daemon-reload
systemctl enable --now prometheus.service
  1. 验证状态
# 查看服务状态
[root@k8s-master1 apps]#systemctl is-active prometheus
active

# 查看监听端口
[root@k8s-master1 apps]#netstat -nltp|grep 9090
tcp6       0      0 :::9090                 :::*                    LISTEN      1965/prometheus 

1.2.3 验证prometheus web界面

二、通过node-exporter和cadvisor收集指标数据

2.1 node-exporter

k8s各node节点安装node-exporter(二进制或daemonset方式),用于收集各k8s节点宿主机的监控指标数据,默认监听端口为9100

​​

2.1.1 daemonset方式部署node-exporter

说明:若k8s环境中已通过其他方式部署prometheus node-exporter,需先停止或更改监听端口,防止端口冲突

2.1.1.1 下载node-exporter镜像

docker pull prom/node-exporter:v1.3.1
docker tag prom/node-exporter:v1.3.1 harbor.chu.net/baseimages/node-exporter:v1.3.1
docker push harbor.chu.net/baseimages/node-exporter:v1.3.1

2.1.1.2 编写yaml文件

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: monitoring 
  labels:
    k8s-app: node-exporter
spec:
  selector:
    matchLabels:
        k8s-app: node-exporter
  template:
    metadata:
      labels:
        k8s-app: node-exporter
    spec:
      tolerations:			# 容忍
        - effect: NoSchedule
          key: node-role.kubernetes.io/master
      containers:
      - image: harbor.chu.net/baseimages/node-exporter:v1.3.1 	# prom/node-exporter:v1.3.1
        imagePullPolicy: Always 	#IfNotPresent	#镜像拉取策略
        name: prometheus-node-exporter
        ports:
        - containerPort: 9100
          hostPort: 9100		# 宿主机暴露port
          protocol: TCP
          name: metrics
        volumeMounts:
        - mountPath: /host/proc
          name: proc
        - mountPath: /host/sys
          name: sys
        - mountPath: /host
          name: rootfs
        args:
        - --path.procfs=/host/proc
        - --path.sysfs=/host/sys
        - --path.rootfs=/host
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: sys
          hostPath:
            path: /sys
        - name: rootfs
          hostPath:
            path: /
      hostNetwork: true
      hostPID: true
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: "true"
  labels:
    k8s-app: node-exporter
  name: node-exporter
  namespace: monitoring 
spec:
  type: NodePort
  ports:
  - name: http
    port: 9100
    nodePort: 39100
    protocol: TCP
  selector:
    k8s-app: node-exporter

2.1.1.3 执行创建

kubectl create ns monitoring
kubectl apply -f daemonset-deploy-node-exporter.yaml

查看状态

# 查看pod状态
[root@k8s-deploy ~]#kubectl get pod -n monitoring -owide
NAME                  READY   STATUS    RESTARTS       AGE     IP          NODE        NOMINATED NODE   READINESS GATES
node-exporter-7s7kf   1/1     Running   0              3m21s   10.0.0.43   10.0.0.43   <none>           <none>
node-exporter-hjk6c   1/1     Running   0              3m21s   10.0.0.13   10.0.0.13   <none>           <none>
node-exporter-qn8w7   1/1     Running   5 (115s ago)   3m21s   10.0.0.42   10.0.0.42   <none>           <none>
node-exporter-qx9kg   1/1     Running   0              3m21s   10.0.0.41   10.0.0.41   <none>           <none>
node-exporter-rcszx   1/1     Running   0              3m21s   10.0.0.12   10.0.0.12   <none>           <none>
node-exporter-x8hft   1/1     Running   0              3m21s   10.0.0.11   10.0.0.11   <none>           <none>

# 查看service
[root@k8s-deploy ~]#kubectl get svc -n monitoring
NAME            TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
node-exporter   NodePort   10.100.100.181   <none>        9100:39100/TCP   3m39s

# 宿主机监听端口
[root@k8s-master3 ~]#netstat -ntlp|grep 9100
tcp6       0      0 :::9100                 :::*                    LISTEN      1854108/node_export 

2.1.1.4 验证node-exporter web页面

访问宿主机IP:39100

2.1.1.5 验证node-exporter指标数据

https://knowledge.zhaoweiguo.com/build/html/cloudnative/prometheus/metrics/kubernetes-nodes.html

访问service 宿主机IP:39100/metrics

直接访问宿主机IP:9100/metrics

常见指标说明

node_boot_time		系统自启动以后的总运行时间
node_cpu		系统CPU使用量
node_disk*		磁盘IO
node_filesystem*	系统文件使用量
node_load1		系统CPU负载
node_memory*		内存使用量
node_network*		网络带宽指标
go_*			node exporter中go相关指标
process_*		node exporter自身进程相关运行指标

2.1.2 prometheus server收集node-exporter数据

2.1.2.1 添加采集node节点数据配置


[root@k8s-master1 apps]#cat /apps/prometheus/prometheus.yml 
# 全局配置
global:
  scrape_interval: 15s 			# 数据采集间隔时间,默认为1 min
  evaluation_interval: 15s 		# 规则扫描间隔时间,默认为1 min
  # scrape_timeout: 10s			# 数据采集超时时间,默认为10s。该值不能大于scrape_interval,否则Prometheus将会报错。

# 告警配置
alerting:
  alertmanagers:
    - static_configs:
        - targets:
          # - alertmanager:9093

# 规则配置
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"

# 数据采集目标配置
scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]

  # 添加node节点数据采集配置
  - job_name: "prometheus-node"
    static_configs:			# 静态配置
      - targets: ["10.0.0.11:9100","10.0.0.12:9100","10.0.0.13:9100","10.0.0.41:9100","10.0.0.42:9100","10.0.0.43:9100" 	# node地址,端口

2.1.2.2 重启服务

systemctl restart prometheus.service

2.1.2.3 验证prometheus server数据采集状态

​​

2.1.2.4 验证node数据

​​

2.2 cadvisor

cadvisor(容器顾问)不仅可以收集一台机器上所有运行的容器信息,还提供基础查询界面和http接口,方便其他组件如prometheus进行数据抓取,cadvisor可以对节点机器上的容器进行实时监控和性能数据采集,包括容器的CPU使用情况、内存使用情况、网络吞吐量及文件系统使用情况。

https://github.com/google/cadvisor

2.2.1 daemonset方式部署cadvisor

2.2.1.1 下载cadvisor镜像

docker pull registry.cn-hangzhou.aliyuncs.com/zhangshijie/cadvisor-amd64:v0.39.3
docker tag registry.cn-hangzhou.aliyuncs.com/zhangshijie/cadvisor-amd64:v0.39.3 harbor.chu.net/baseimages/cadvisor-amd64:v0.39.3
docker push harbor.chu.net/baseimages/cadvisor-amd64:v0.39.3

2.2.1.2 编写yaml文件

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: cadvisor
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app: cAdvisor
  template:
    metadata:
      labels:
        app: cAdvisor
    spec:
      tolerations:    #污点容忍,忽略master的NoSchedule
        - effect: NoSchedule
          key: node-role.kubernetes.io/master
      hostNetwork: true
      restartPolicy: Always   # 重启策略
      containers:
      - name: cadvisor
        #image: registry.cn-hangzhou.aliyuncs.com/zhangshijie/cadvisor-amd64:v0.39.3 #修改实际镜像
	image: harbor.chu.net/baseimages/cadvisor-amd64:v0.39.3
        imagePullPolicy: Always 	# 镜像策略
        ports:
        - containerPort: 8080
        volumeMounts:
          - name: root
            mountPath: /rootfs
          - name: run
            mountPath: /var/run
          - name: sys
            mountPath: /sys
          - name: docker
            mountPath: /var/lib/containerd
      volumes:
      - name: root
        hostPath:
          path: /
      - name: run
        hostPath:
          path: /var/run
      - name: sys
        hostPath:
          path: /sys
      - name: docker
        hostPath:
          path: /var/lib/containerd	# containerd默认数据目录,docker默认数据目录为/var/lib/docker

2.2.1.3 执行创建

kubectl create ns monitoring
kubectl apply -f daemonset-deploy-cadvisor.yaml

# 查看pod
[root@k8s-deploy case]#kubectl get pod -n monitoring -owide
NAME             READY   STATUS    RESTARTS   AGE   IP          NODE        NOMINATED NODE   READINESS GATES
cadvisor-4tf8k   1/1     Running   0          14s   10.0.0.43   10.0.0.43   <none>           <none>
cadvisor-bmq2c   1/1     Running   0          14s   10.0.0.12   10.0.0.12   <none>           <none>
cadvisor-l5zg6   1/1     Running   0          14s   10.0.0.41   10.0.0.41   <none>           <none>
cadvisor-lhzrb   1/1     Running   0          14s   10.0.0.42   10.0.0.42   <none>           <none>
cadvisor-pkht7   1/1     Running   0          14s   10.0.0.13   10.0.0.13   <none>           <none>
cadvisor-ww5p9   1/1     Running   0          14s   10.0.0.11   10.0.0.11   <none>           <none>

# 查看宿主机监听端口
[root@k8s-node1 apps]#netstat -ntlp|grep 8080
tcp6       0      0 :::8080                 :::*                    LISTEN      3795698/cadvisor

2.2.1.4 验证web页面及指标数据

  • 浏览器访问宿主机IP:8080,查看web页面

  • 浏览器访问 宿主机IP:8080/metrics​,查看指标数据

2.2.2 prometheus server收集cadvisor数据

2.2.2.1 cadvisor指标数据

指标名称 类型 含义
container_cpu_load_average_10s gauge 过去10s容器CPU的平均负载
container_cpu_usage_seconds_total counter 容器在每个CPU内核上的累积占用时间(单位: 秒)
container_cpu_system_seconds_total counter System CPU累积占用时间(单位: 秒)
container_cpu_user_seconds_total counter User CPU累积占用时间(单位: 秒)
container_fs_usage_bytes gauge 容器中文件系统的使用量(单位: 字节)
container_fs_limit_bytes gauge 容器可以使用的文件系统总量(单位: 字节)
container_fs_reads_bytes_total counter 容器累积读取数据的总量(单位: 字节)
container_fs_writes_bytes_total counter 容器累积写入数据的总量(单位: 字节)
container_memory_max_usage_bytes gauge 容器的最大内存使用量(单位: 字节)
container_memory_usage_bytes gauge 容器当前的内存使用量(单位: 字节)
container_spec_memory_limit_bytes gauge 容器的内存使用量限制
machine_memory_bytes gauge 当前主机的内存总量
container_network_receive_bytes_total counter 容器网络累积接收数据总量(单位:字节)
container_network_transmit_bytes_total counter 容器网络累积传输数据总量(单位:字节)

当能够正常采集到cAdvisor 的样本数据后,可以通过以下表达式计算容器的CPU使用率:

  • ​容器CPU使用率

    ​​sum(irate(container_cpu_usage_seconds_total{imagel=""}[1m])) without(cpu)
    
  • 查询容器内存使用量(单位:字节)

    ​​container_memory_usage_bytes{image!=""}
    
  • 查询容器网络接收量(速率)(单位:字节/秒)

    sum(rate(container_network_receive_bytes_total{image!=""}[1m])) without (interface)
    
  • 容器网络传输量字节/秒

    sum(rate(container_network_transmit_bytes_total{imagel=""}[1m])) without (interface)
    
  • 容器文件系统读取速率字节/秒

    sum(rate(container_fs_reads_bytes_totalf{image!=""}[1m])) without (device)
    
  • 容器文件系统写入速率字节/秒

    sum(rate(container_fs_writes_bytes_total{image!=""}[1m])) without (device)
    

cadvisor常用容器监控指标

  1. 网络流量

    #容器网络接收的字节数(1分钟内),根据名称查询name=~".+"
    sum(rate(container_network_receive_bytes_total{name=~".+"}[1m])) by (name)
    
    #容器网络传输的字节数(1分钟内),根据名称查询name=~".+"
    sum(rate(container_network_transmit_bytes_total{name=~".+"}[1m])) by (name)
    

  2. 容器CPU相关

    #所用容器system cpu的累计使用时间(1min内)
    sum(rate(container_cpu_system_seconds_total[1m]))
    
    #每个容器system cpu的使用时间(1min内)
    sum(irate(container_cpu_system_seconds_total{imagel=""}[1m])) without (cpu)
    
    #每个容器的Cpu使用率
    sum(rate(container_cpu_usage_seconds_total{name=~".+"}[1m])) by (name)*100
    
    #总容器的cpu使用率
    sum(sum(rate(container_cpu_usage_seconds_total{name=~".+"}[1m])) by (name)*100)
    

2.2.2.2 添加采集cadvisor数据配置

#cat /apps/prometheus/prometheus.yml
......
scrape_configs:
  ......
  # 添加cadvisor信息
  - job_name: "prometheus-cadvisor"
    static_configs:
      - targets: ["10.0.0.11:8080","10.0.0.12:8080","10.0.0.13:8080","10.0.0.41:8080","10.0.0.42:8080","10.0.0.43:8080"]

重启服务

systemctl restart prometheus.service

2.2.2.3 验证prometheus数据采集状态

2.2.2.4 验证cadvisor数据

sum(rate(container_cpu_usage_seconds_total{name=~".+"}[1m])) by (name)*100

三、通过grafana展示prometheus的node和pod数据

官网:https://grafana.com/grafana

grafana server(10.0.0.62)与prometheus server进行分离

3.1 二进制部署grafana

下载:https://grafana.com/grafana/download

国内镜像源下载:https://mirrors.tuna.tsinghua.edu.cn/grafana/

安装说明:https://grafana.com/docs/grafana/latest/setup-grafana/installation/

3.1.1 下载并安装

wget https://mirrors.tuna.tsinghua.edu.cn/grafana/apt/pool/main/g/grafana-enterprise/grafana-enterprise_9.3.0_amd64.deb
apt update
apt-get install -y adduser libfontconfig1
dpkg -i grafana-enterprise_9.3.0_amd64.deb

3.1.2 修改grafana配置文件

vim /etc/grafana/grafana.ini 
......
# 配置端口类型、地址、端口号
[server]
protocol = http

http_addr = 10.0.0.62

http_port = 3000

3.1.3 启动服务

systemctl enable grafana-server.service 
systemctl restart grafana-server.service 

查看端口

[root@grafana opt]#netstat -ntlp|grep 3000
tcp        0      0 10.0.0.62:3000          0.0.0.0:*               LISTEN      5268/grafana-server

3.1.4 验证grafana web界面

  1. 登录http://10.0.0.62:3000

  1. 进入首页

3.1.5 添加数据源


选择prometheus

设置数据源名称,访问prometheus server的URL地址

3.2 展示监控数据

模板:https://grafana.com/grafana/dashboards/

3.2.1 展示node数据

3.2.1.1 查找模板

3.2.1.2 查看模板信息,下载模板

​​​

3.2.1.3 导入模板

Dashboard--Import

可选择导入json文件、加载模板ID(会自动下载该模板)、复制json文件内容任一方式导入模板

选择数据源

3.2.1.4 展示node监控数据

进入首页,选择相应的dashboard

查看监控数据

​​​

3.2.2 展示pod数据

3.2.2.1 查找模板

3.2.2.2 查看模板信息,下载模板

3.2.2.3 导入模板

3.2.2.4 展示pod监控数据


四、梳理prometheus服务发现

4.1 服务发现机制

prometheus默认是采用pull方式拉取监控数据的,也就是定时去目标主机上抓取metrics数据,每一个被抓取的目标需要暴露一个HTTP接口,prometheus通过这个暴露的接口就可以获取到相应的指标数据,这种方式需要由目标服务决定采集的目标有哪些,通过配置在scarpe_confis中的各种job来实现,无法动态感知新服务,如果后面增加了节点或组件信息,就得手动修改prometheus配置,并重启prometheus,很不方便,所以出现了动态服务发现,动态服务发现能够自动发现集群中的新端点,并加入到配置中,通过服务发现,prometheus能查询到需要监控的target列表,然后轮询这些target获取监控数据。

4.2 标签重写(relabeling)

prometheus的relabeling能够在抓取到目标实例之前把目标实例的元数据标签动态重新修改,动态添加或者覆盖标签。

prometheus从kubernetes API动态发现target之后,在被发现的target实例中,都包含一些原始的Metadata标签信息,默认标签有:

__address__: 以<host>:<port>格式显示targets地址
__scheme__: 采集的目标服务地址的scheme形式,HTTP或HTTPS
__metrics_path__:采集的目标服务访问路径

4.2.1 重写目的

为了更好的识别监控指标,便于后期调用数据绘图、告警等需求,prometheus支持对发现的目标进行label修改,在两个阶段可以重新标记:

graph LR a[配置] b[重新标签<br/>relabel_configs] c[抓取] d[重新标签</br>metric_relabel_configs] e[TSDB] a-->b-->c-->d-->e
  • relabel_configs

    在对target进行数据采集之前(例如在采集数据之前重新定义标签信息,如目的IP、目的端口等信息),可以使用relabel_configs添加、修改或修改一些标签,也可以只采集特定目标或过滤目标。

  • metric_relabel_configs

    在对target进行数据采集之后,即如果是已抓取到指标数据时,可以使用metric_relabel_configs做最后的重新标记和过滤

4.2.2 label

  • source_label

源标签,没有经过relabel处理之前标签的名称

  • target_label

通过action处理之后新的标签名称

  • regex

给定的值或正则表达式匹配,匹配源标签的值

  • replacement

通过分组替换后标签(target_label)对应的/()/() $1:$2

4.2.3 action

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

  • replace

替换标签值,根据regex正则匹配到源标签的值,使用replacement来引用表达式匹配的分组

  • keep

满足regex正则条件的实例进行采集,把source_labels中没有匹配到regex正则内容的target实例丢掉,即只采集匹配成功的实例

  • drop

满足regex正则条件的实例不采集,把source_labels中匹配到的regex正则内容的target实例丢掉,即只采集没有匹配成功的实例

  • hashmod

使用hashmod计算source_labels的Hash值并进行对比,基于自定义的模数取模,以实现对目标进行分类、重新赋值等功能

scrape_configs:
  - job_name: ip_job
    relabel_configs:
    - source_labels: [__address__]
      modulus: 4
      target_label: __ip_hash
      action: hashmod
    - source_labels: [__ip_hash]
      regex: ^1$
      action: keep
  • labelmap

匹配regex所有标签名称,然后复制匹配标签的值进行分组,可以通过replacement分组引用(${1},${2},...)​替代

  • labelkeep

匹配regex所有标签名称,其他不匹配的标签都将从标签集中删除

  • labeldrop

匹配regex所有标签名称,其他匹配的标签都将从标签集中删除

4.3 服务发现类型

prometheus获取数据源target的方式有多种,如静态配置和动态服务发现配置,prometheus目前支持的服务发现有多种,常用发现方式的主要分为以下几种:

静态服务发现、基于文件的服务发现、DNS服务发现、Consul服务发现、基于kubernetes API服务发现。

更多说明见:https://prometheus.io/docs/prometheus/latest/configuration/configuration/#configuration-file

4.3.1 静态服务发现

静态服务发现,基于prometheus配置文件指定的监控目标,每当有一个新的目标实例需要监控,都需要手动修改配置文件,配置目标target

prometheus server配置(yaml)示例:

scrape_configs:
  - job_name: "staic_test"	# job名称
    # metrics_path: "/metrics"	# 默认URI
    # scheme: http		# 默认协议
    static_configs:		# 静态服务配置
      - targets: ["10.0.0.11:8080","10.0.0.12:8080","10.0.0.13:8080"]	# 目标端点地址

4.3.2 基于文件的服务发现

基于指定的文件实现服务发现,发现监控目标

prometheus server配置(yaml)示例:

scrape_configs:
  # 基于文件服务发现监控配置
  - job_name: 'file_sd_test'
    scrape_interval: 10s	# 数据采集间隔时间
    file_sd_configs:
    - files:	 		# 支持yaml和json格式文件
       - /data/prometheus/static_conf/*.yml
       refresh_interval: 10s	# 重新读取文件的刷新时间

/data/prometheus/static_conf/​目录下yaml文件内容

- targets: ['10.0.0.11:39100','10.0.0.12:39100']

4.3.3 DNS服务发现

基于DNS的服务发现允许配置指定一组的DNS域名,这些域名会定期查询以发现目标列表,域名需要可以被配置的DNS服务器解析为IP。

此服务发现方式仅支持基本的DNS A、AAAA和SRV记录查询。

A记录:		域名解析为一个IPv4地址
AAAA记录:	域名解析为一个IPv6地址
SRV:	SRV记录了哪台计算机提供了具体哪个服务,格式为:服务名称.协议类型.域名(如:_example-server._tcp.www.mydns.com)

prometheus server配置(yaml)示例:

scrape_configs:
  - job_name: 'dns_sd_test'
    scrape_interval: 10s	# 数据采集间隔时间
    dns_sd_configs:
    - name: ["node1.example.com","node2.example.com"]	# 域名
      type: A
      port: 9100

4.3.4 Consul服务发现

https://www.consul.io/

consul基于golang开发的开源工具,主要面向分布式,服务化的系统提供服务注册、服务发现和配置管理的功能,提供服务发现/注册、健康检查和保持一致性等功能。

Consul是一个分布式k/v数据库,常用于服务的服务注册和发现。基于consul服务动态发现监控目标,prometheus一直监控consul服务,当发现在consul中注册的服务有变化,prometheus就会自动监控到所有注册到consul中目标资源。

prometheus server配置(yaml)示例:

scrape_configs:
  - job_name: 'consul_sd_test'
    honor_labels: true
    metrics_path: "/metrics"
    scheme: http
    consul_sd_configs:
    - server: 10.0.0.11:8500
      services: []		# 发现的目标服务名称,空为所有服务
    - server: 10.0.0.12:8500
      services: []

参数说明:

honor_labels :控制prometheus如何处理已经存在于已抓取数据中的标签与prometheus将附加服务器端的标签之间的冲突("job"和"instance"标签,手动配置的目标标签已经服务发现实现生成的标签)。

如果honor_labels设置为“true”,则保留已抓取数据的标签值并忽略冲突的prometheus服务器端标签来解决标签冲突;另外如果被采集端有标签但是值为空,则使用prometheus本地标签值;如果被采集端没有此标签,但是prometheus配置了,那使用prometheus配置的标签值。

如果honor_labels设置为“false”,则通过将已抓取数据中的冲突标签重命名为exported_<original-label>​(如expoeterd_instance​,exporterd_job​)然后附加服务器端标签来解决标签冲突。

4.3.5 基于kubernetes API实现服务发现

基于kubernetes API实现服务发现,prometheus与kubernetes的API进行交互,动态的发现kubernetes中部署的所有可监控的目标资源。

在Kubernetes中,Prometheus 通过与 Kubernetes API 集成主要支持5种服务发现模式:Node、Service、Pod、Endpoints、Ingress。不同的服务发现模式适用于不同的场景,例如:node适用于与主机相关的监控资源,如节点中运行的Kubernetes 组件状态、节点上运行的容器状态等;service 和 ingress 适用于通过黑盒监控的场景,如对服务的可用性以及服务质量的监控;endpoints 和 pod 均可用于获取 Pod 实例的监控数据,如监控用户或者管理员部署的支持 Prometheus 的应用。

prometheus server配置示例:

...
scrape_configs:
  - job_name: "kubernetes_sd_test"
    scheme: http
    kubernetes_sd_configs: 
      - role: node

五、在prometheus实现kubernetes-apiserver及coredns服务发现

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

5.1 目标发现模式

在Kubernetes中,Prometheus 通过与 Kubernetes API 集成主要支持5种服务发现模式:Node、Service、Pod、Endpoints、Ingress。不同的服务发现模式适用于不同的场景,例如:node适用于与主机相关的监控资源,如节点中运行的Kubernetes 组件状态、节点上运行的容器状态等;service 和 ingress 适用于通过黑盒监控的场景,如对服务的可用性以及服务质量的监控;endpoints 和 pod 均可用于获取 Pod 实例的监控数据,如监控用户或者管理员部署的支持 Prometheus 的应用。

node

node角色可以发现集群中每个node节点的地址端口,默认为Kubelet的HTTP端口。目标地址默认为Kubernetes节点对象的第一个现有地址,地址类型顺序为NodeInternalIP​、NodeExternalIP​、NodeLegacyHostIP​和NodeHostName​。

作用:监控K8S的node节点的服务器相关的指标数据。

可用标签:

__meta_kubernetes_node_name:	node节点的名称
__meta_kubernetes_node_label_<labelname>:	k8s中node节点的标签.<labelname>代表标签名称
__meta_kubernetes_node_labelpresent_<labelname>:	标签存在则为true.<labelname>代表标签名称
__meta_kubernetes_node_annotation_<annotationname>:	k8s中node节点的注解.<annotationname>代表注解名称
__meta_kubernetes_node_annotationpresent_<annotationname>:	注解存在则为true.<annotationname>代表注解名称
__meta_kubernetes_node_address_<address_type>:			不同类型的node节点地址,例如:
							_meta_kubernetes_node_address_Hostname="test-k8s-node1"
							_meta_kubernetes_node_address_InternalIP="10.0.0.11"
instance:	从apiserver获取到的节点名称

service

service​角色可以发现每个service的ip和port,将其作为target。这对于黑盒监控(blackbox)很有用。

即:一个Service访问到哪个pod,就把哪个pod的数据传上来。使用的场景很少。只是看Service对应业务是否健康的时候可以使用。

可用标签:

__meta_kubernetes_namespace:				service所在的命名空间
__meta_kubernetes_service_annotation_<annotationname>: 	k8s中service的注解
__meta_kubernetes_service_annotationpresent_<annotationname>: 	注解存在则为true
__meta_kubernetes_service_cluster_ip: 		k8s中service的clusterIP
__meta_kubernetes_service_external_name: 	k8s中service的external_name
__meta_kubernetes_service_label_<labelname>: 	k8s中service的标签
__meta_kubernetes_service_labelpresent_<labelname>: 	标签存在则为true
__meta_kubernetes_service_name: 		k8s中service的名称
__meta_kubernetes_service_port_name:		k8s中service的端口
__meta_kubernetes_service_port_protocol: 	k8s中service的端口协议
__meta_kubernetes_service_type: 		k8s中service的类型

pod

pod角色可以发现所有pod并将其中的pod ip作为target。如果有多个端口或者多个容器,将生成多个target(例如:80,443这两个端口,pod ip为10.0.244.22,则将10.0.244.22:80,10.0.244.22:443分别作为抓取的target)。
如果容器没有指定的端口,则会为每个容器创建一个无端口target,以便通过relabel手动添加端口。

可用标签:

__meta_kubernetes_namespace: 		pod所在的命名空间
__meta_kubernetes_pod_name: 		pod的名称
__meta_kubernetes_pod_ip: 		pod的ip
__meta_kubernetes_pod_label_<labelname>: 		pod的标签
__meta_kubernetes_pod_labelpresent_<labelname>: 	标签存在则为true
__meta_kubernetes_pod_annotation_<annotationname>: 	pod的注解
__meta_kubernetes_pod_annotationpresent_<annotationname>: 	注解存在则为true
__meta_kubernetes_pod_container_init: 			如果容器是InitContainer,则为true
__meta_kubernetes_pod_container_name: 			容器的名称
__meta_kubernetes_pod_container_port_name: 		容器的端口名称
__meta_kubernetes_pod_container_port_number: 		容器的端口号
__meta_kubernetes_pod_container_port_protocol: 		容器的端口协议
__meta_kubernetes_pod_ready: 				pod的就绪状态,true或false。
__meta_kubernetes_pod_phase: 			pod的生命周期状态.Pending, Running, Succeeded, Failed or Unknown
__meta_kubernetes_pod_node_name: 		pod所在node节点名称
__meta_kubernetes_pod_host_ip: 			pod所在node节点ip
__meta_kubernetes_pod_uid: 			pod的uid
__meta_kubernetes_pod_controller_kind: 		pod控制器的类型ReplicaSet ,DaemonSet,Job,StatefulSet...
__meta_kubernetes_pod_controller_name: 		pod控制器的名称

Endpoints

endpoints​角色可以从ep(endpoints)列表中发现所有targets

可用标签:

__meta_kubernetes_namespace: 		ep对象所在的命名空间
__meta_kubernetes_endpoints_name: 	ep的名称

直接从ep对象的列表中获取的所有target,下面的标签将会被附加上
	__meta_kubernetes_endpoint_hostname: 	ep的主机名
	__meta_kubernetes_endpoint_node_name: 	ep的node节点名
	__meta_kubernetes_endpoint_ready: 	ep的就绪状态,true或false。
	__meta_kubernetes_endpoint_port_name: 	ep的端口名称
	__meta_kubernetes_endpoint_port_protocol: 	ep的端口协议
	__meta_kubernetes_endpoint_address_target_kind: ep对象的目标类型,比如Pod
	__meta_kubernetes_endpoint_address_target_name: ep对象的目标名称,比如pod名称
如果ep是属于service的话,则会附加service角色的所有标签
对于ep的后端节点是pod,则会附加pod角色的所有标签(即上边介绍的pod角色可用标签)
如手动创建一个ep,这个ep关联到一个pod,则prometheus的标签中会包含这个pod角色的所有标签

Ingress

ingress​角色发现ingress的每个路径的target。这通常对黑盒监控很有用。该地址将设置为ingress中指定的host。

可用标签:

__meta_kubernetes_namespace: 			ingress所在的命名空间
__meta_kubernetes_ingress_name: 		ingress的名称
__meta_kubernetes_ingress_label_<labelname>: 	ingress的标签
__meta_kubernetes_ingress_labelpresent_<labelname>: 		标签存在则为true
__meta_kubernetes_ingress_annotation_<annotationname>: 		ingress的注解
__meta_kubernetes_ingress_annotationpresent_<annotationname>: 	注解存在则为true
__meta_kubernetes_ingress_scheme: 		ingress的协议,如果设置了tls则是https,默认http
__meta_kubernetes_ingress_path: 		ingress中指定的的路径。默认为/

示例

发现并监控prometheus命名空间下所有Service对应的所有pod的metrics数据

...
- job_name: prometheus-monitor
  honor_timestamps: true
  scrape_interval: 1m
  scrape_timeout: 10s
  metrics_path: /metrics
  scheme: http
  kubernetes_sd_configs:
  - role: endpoints
    namespaces:
      names:
      - prometheus
  relabel_configs:
  - source_labels: [__meta_kubernetes_service_name]
    separator: ;
    regex: prometheus-headless
    replacement: $1
    action: keep
  - source_labels: [__meta_kubernetes_pod_container_name]
    separator: ;
    regex: prometheus
    replacement: $1
    action: keep
  - source_labels: [__meta_kubernetes_namespace]
    separator: ;
    regex: (.*)
    target_label: namespace
    replacement: $1
    action: replace

发现流程:找命名空间为prometheus​下的所有Service(Service注册在DNS上会暴露端口,因此不用考虑端口),然后Service由于包含了endpoints列表,因此可以找到所有的pod+port,再根据metrics_path可以拼接成http://pod+port/metrics​,进而监控了所有pod的监控指标

role是endpoints:此配置说明是通过Service找Pod

5.2 apiserver服务发现

apiserver作为kubernetes最核心的组件,它的监控也是非常有必要的,对于apiserver的监控,可以直接通过kubernetes的service来获取。

5.2.1 创建RBAC规则

apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: monitoring

---
apiVersion: v1
kind: Secret
type: kubernetes.io/service-account-token
metadata:
  name: monitoring-token
  namespace: monitoring
  annotations:
    kubernetes.io/service-account.name: "prometheus"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  - services
  - endpoints
  - pods
  - nodes/proxy
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - "extensions"
  resources:
    - ingresses
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - configmaps
  - nodes/metrics
  verbs:
  - get
- nonResourceURLs:
  - /metrics
  verbs:
  - get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: monitoring

查看

[root@k8s-deploy ~]#kubectl get svc
NAME                     TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
kubernetes               ClusterIP   10.100.0.1      <none>        443/TCP        38d

[root@k8s-deploy ~]#kubectl get ep
NAME                     ENDPOINTS                                      AGE
kubernetes               10.0.0.11:6443,10.0.0.12:6443,10.0.0.13:6443   38d

# 查看serviceaccount
[root@k8s-deploy ~]#kubectl get sa -n monitoring
NAME         SECRETS   AGE
default      0         2d2h
prometheus   0         4m4s

# 查看secret
[root@k8s-deploy ~]#kubectl get secrets -n monitoring
NAME               TYPE                                  DATA   AGE
monitoring-token   kubernetes.io/service-account-token   3      4m53s

5.2.2 准备文件

  • token
# 生成token
kubectl describe secrets monitoring-token -n monitoring|grep "token:"|awk '{print $2}' > k8s.token

# 复制文件至prometheus server服务器上,需提前在prometheus server上创建目录mkdir -p /apps/certs
scp k8s.token 10.0.0.61:/apps/certs/
  • TLS证书
# 复制k8s上ca.pem(或ca.crt)文件至prometheus server服务器上
[root@prometheus-server1 ~]#scp 10.0.0.11:/etc/kubernetes/ssl/ca.pem /apps/certs

5.2.3 编写配置

  • prometheus server部署在k8s集群内
- job_name: "kubernetes-apiserver"
  scheme: https
  kubernetes_sd_configs:
  - role: endpoints
  tls_config:		# 配置https方式,需要tls证书
    ca_file: /apps/certs/ca.pem
  bearer_token_file: /apps/certs/k8s.token
  relabel_configs:
  - source_labels: [__meta_kubernetes_namespace,__meta_kubernetes_service_name,__meta_kubernetes_endpoint_port_name]
    regex: default;kubernets;https
    action: keep
  • prometheus server部署在k8s集群外
  - job_name: 'kubernetes-apiservers-monitor'
    kubernetes_sd_configs:
    - role: endpoints
      api_server: https://10.0.0.10:6443 # k8s master VIP
      tls_config:
        ca_file: /apps/certs/ca.pem
      bearer_token_file: /apps/certs/k8s.token
    scheme: https
    tls_config:
      ca_file: /apps/certs/ca.pem
    bearer_token_file: /apps/certs/k8s.token
    relabel_configs:
    - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
      action: keep
      regex: default;kubernetes;https

匹配说明:

含义为匹配namespace为default,svc名称为kubernetes并且协议是https,匹配成功后进行保留,并且把regex作为source_labels相对应的值。即labels为key、regex为值。

5.2.4 验证apiserver服务发现

查看apiserver信息

[root@k8s-deploy ~]#kubectl get ep
NAME                     ENDPOINTS                                      AGE
kubernetes               10.0.0.11:6443,10.0.0.12:6443,10.0.0.13:6443   38d

5.2.5 apiserver指标数据

APIserver组件是k8s集群的入口,所有请求都是从apiserver进来的,所以对apiserver指标做监控可以用来判断集群的健康状况。

apiserver_request_total

查询apiserver最近10分钟不同方法的请求数量统计:

sum(rate(apiserver_request_total[10m])) by (resources,subresource,verb)

替换标签

  - job_name: 'kubernetes-service-endpoints'	# job名称
    kubernetes_sd_configs:
    - role: endpoints				# endpoints发现
      api_server: https://10.0.0.10:6443
      tls_config:
        ca_file: /apps/certs/ca.pem
      bearer_token_file: /apps/certs/k8s.token
    scheme: https
    tls_config:
      ca_file: /apps/certs/ca.pem
    bearer_token_file: /apps/certs/k8s.token
    relabel_configs: 				# 标签重写配置
    # 保留标签然后再向下执行
    - source_labels: [__meta_kubernetes_namespace,__meta_kubernetes_service_name,__meta_kubernetes_endpoint_port_name]
      action: keep
      regex: default;kubernetes;https

    # 将__meta_kubernetes_namespace修改为kubernetes_namespace
    - source_labels: [__meta_kubernetes_namespace]
      action: replace
      target_label: kubernetes_namespace

替换之前

替换之后

__meta_kubernetes_namespace​标签替换为kubernetes_namespace

annotation_prometheus_io_scrape

在k8s中,基于prometheus的发现规则,需要在被发现的目的target定义注解匹配annotation_prometheus_io_scrape=true,且必须匹配成功该注解才会保留监控target,然后再进行数据抓取并进行标签替换,如annotation_prometheus_io_scheme标签为http或https:

  - job_name: 'kubernetes-test'	# job名称
    kubernetes_sd_configs:
    - role: endpoints				# endpoints发现
      api_server: https://10.0.0.10:6443
      tls_config:
        ca_file: /apps/certs/ca.pem
      bearer_token_file: /apps/certs/k8s.token
    scheme: https
    tls_config:
      ca_file: /apps/certs/ca.pem
    bearer_token_file: /apps/certs/k8s.token
    relabel_configs: 				# 标签重写配置
    # 将annotation_prometheus_io_scrape的值为true,保留标签然后再向下执行
    - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
      action: keep
      regex: true

    # 将annotation_prometheus_io_scheme修改为__scheme__
    - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
      action: replace
      target_label: __scheme__
      regex: (https?) 	# 正则匹配http或https协议,其他协议不替换

    - source_labels: [__scheme__]
      action: replace
      target_label: __scheme__
      regex: https
      replacement: http

    # 将annotation_prometheus_io_path替换为__metrics_path__
    - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
      action: replace
      target_label: __metrics_path
      regex: (.+)	#路径为1到任意长度(.表示\n之外的任意单个字符,+表示一次或多次)

    # 地址发现即标签重写
    - source_labels: [__address__,__meta_kubernetes_service_annotation_prometheus_io_port]
      action: replace
      target_label: __address__
      regex: ([^:]+)(?::\d+)?;(\d+) 
      replacement: $1:$2 	# 格式为地址:端口

    # 匹配regex所匹配的标签,然后进行应用
    - action: labelmap
      regex: __meta_kubernetes_service_label_(.+)	#通过正则匹配名称

5.3 coredns服务发现

5.3.1 编写配置

  - job_name: 'kubernetes-service-endpoints'
    kubernetes_sd_configs:
    - role: endpoints
      api_server: https://10.0.0.10:6443 # k8s master VIP
      tls_config:
        ca_file: /apps/certs/ca.pem
      bearer_token_file: /apps/certs/k8s.token
    scheme: https
    tls_config:
      ca_file: /apps/certs/ca.pem
    bearer_token_file: /apps/certs/k8s.token
    relabel_configs:
    - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
      action: keep
      regex: true

    - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
      action: replace
      target_label: __scheme__
      regex: (https?)

    - source_labels: [__scheme__]
      action: replace
      target_label: __scheme__
      regex: https
      replacement: http

    - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
      action: replace
      target_label: __metrics_path__
      regex: (.+)

    - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
      action: replace
      target_label: __address__
      regex: ([^:]+)(?::\d+)?;(\d+)
      replacement: $1:$2

    - action: labelmap
      regex: __meta_kubernetes_service_label_(.+)

    - source_labels: [__meta_kubernetes_namespace]
      action: replace
      target_label: kubernetes_namespace

    - source_labels: [__meta_kubernetes_service_name]
      action: replace
      target_label: kubernetes_service_name

5.3.2 查看core-dns状态

[root@k8s-deploy ~]#kubectl describe svc kube-dns -n kube-system
Name:              kube-dns
Namespace:         kube-system
Labels:            addonmanager.kubernetes.io/mode=Reconcile
                   k8s-app=kube-dns
                   kubernetes.io/cluster-service=true
                   kubernetes.io/name=CoreDNS
Annotations:       prometheus.io/port: 9153	# 注解标签,用于prometheus匹配发现端口
                   prometheus.io/scrape: true	# 注解标签,用于prometheus匹配抓取数据
Selector:          k8s-app=kube-dns
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.100.0.2
IPs:               10.100.0.2
Port:              dns  53/UDP
TargetPort:        53/UDP
Endpoints:         10.200.107.218:53,10.200.169.133:53,10.200.36.97:53
Port:              dns-tcp  53/TCP
TargetPort:        53/TCP
Endpoints:         10.200.107.218:53,10.200.169.133:53,10.200.36.97:53
Port:              metrics  9153/TCP
TargetPort:        9153/TCP
Endpoints:         10.200.107.218:9153,10.200.169.133:9153,10.200.36.97:9153
Session Affinity:  None
Events:            <none>

5.3.3 验证服务发现

修改deployment控制器的副本数,让endpoint数量发生变化,验证自动发现新添加的pod

[root@k8s-master3 ~]#kubectl get deploy -n kube-system
NAME                      READY   UP-TO-DATE   AVAILABLE   AGE
calico-kube-controllers   1/1     1            1           39d
coredns                   3/3     3            3           37d
    
[root@k8s-master3 ~]#kubectl scale deployment coredns --replicas=4 -n kube-system 
deployment.apps/coredns scaled

[root@k8s-master3 ~]#kubectl get deploy -n kube-system
NAME                      READY   UP-TO-DATE   AVAILABLE   AGE
calico-kube-controllers   1/1     1            1           39d
coredns                   4/4     4            4           37d

​​

自动发现新的pod

注:由于prometheus server部署在k8s集群内,可访问ClusterIP,若prometheus部署在k8s集群外,需要将service类型修改为NodePort。

5.3.4 grafana展示监控

模板:14981

posted @ 2023-02-26 22:15  areke  阅读(653)  评论(0)    收藏  举报