Hadoop RPC源码阅读-服务端Server

Hadoop版本Hadoop2.6

RPC主要分为3个部分:(1)交互协议 (2)客户端(3)服务端

(3)服务端

 

RPC服务端的实例代码:

public class Starter {
    public static void main(String[] args) throws IOException {
        RPC.Builder build = new RPC.Builder(new Configuration());
        build.setBindAddress("localhost").setPort(10000).setProtocol(LoginServiceInterface.class).setInstance(new LoginServiceImpl());
        RPC.Server server = build.build();
        server.start();
    }
}

 

RPC 服务端主要通过NIO来处理客户端发来的请求。

RPC服务端涉及的类主要有

org.apache.hadoop.ipc.Server(抽象类,server的最顶层类,与客户端的链接,响应,数据传输)

org.apache.hadoop.ipc.RPC.Server(RPC的内部类,是一个抽象类,主要涉及将请求交给动态代理)

org.apache.hadoop.ipc.WritableRpcEngine.Server(WritableRpcEngine的内部类,是一个静态类,动态代理的具体实现,得到请求结果)

 

先看ipc.Server类,它有几个主要的内部类分别是:

Call :用于存储客户端发来的请求

Listener : 监听类,用于监听客户端发来的请求,同时Listener内部还有一个静态类,Listener.Reader,当监听器监听到用户请求,便让Reader读取用户请求。

Responder :响应RPC请求类,请求处理完毕,由Responder发送给请求客户端。

Connection :连接类,真正的客户端请求读取逻辑在这个类中。

Handler :请求处理类,会循环阻塞读取callQueue中的call对象,并对其进行操作。

 

(1)启动服务

如上述服务端实例代码所示,当调用函数start(),RPC服务端就启动起来了,我们先看看start()里面有什么

  /** Starts the service.  Must be called before any calls will be handled. */
//该实现在ipc.Server类中
  public synchronized void start() {
    responder.start();
    listener.start();
    handlers = new Handler[handlerCount];
    
    for (int i = 0; i < handlerCount; i++) {
      handlers[i] = new Handler(i);
      handlers[i].start();
    }
  }

可以看出,Server端通过启动Listener监听客户端发来的请求,启动responder响应客户端发来的请求,启动多个线程Handler循环阻塞读取请求交给responder响应。

先看看如何监听客户端发来的请求

(2)监听客户端的连接

Listner初始化,构造函数如下所示,通过Java NIO创建一个ServerSocketChannel监听本地地址和端口,并设置成非阻塞模式,并注册成接听客户端连接事件,并启动多个Reader线程,同时将读客户端请求数据的事件交给Reader实现。

 public Listener() throws IOException {
      address = new InetSocketAddress(bindAddress, port);
      // Create a new server socket and set to non blocking mode
      acceptChannel = ServerSocketChannel.open();
      acceptChannel.configureBlocking(false);

      // Bind the server socket to the local host and port
      bind(acceptChannel.socket(), address, backlogLength, conf, portRangeConfig);
      port = acceptChannel.socket().getLocalPort(); //Could be an ephemeral port
      // create a selector;
      selector= Selector.open();
      readers = new Reader[readThreads];
      for (int i = 0; i < readThreads; i++) {
        Reader reader = new Reader(
            "Socket Reader #" + (i + 1) + " for port " + port);
        readers[i] = reader;
        reader.start();
      }

      // Register accepts on the server socket with the selector.
      acceptChannel.register(selector, SelectionKey.OP_ACCEPT);
      this.setName("IPC Server listener on " + port);
      this.setDaemon(true);
    }

Listener:Listener是一个Thread类的子类,通过start()启动该线程,并运行该线程的run()方法:

public void run() {
      LOG.info(Thread.currentThread().getName() + ": starting");
      SERVER.set(Server.this);
      connectionManager.startIdleScan();
      while (running) {
        SelectionKey key = null;
        try {
          getSelector().select();
          Iterator<SelectionKey> iter = getSelector().selectedKeys().iterator();//获取连接事件
          while (iter.hasNext()) {//遍历连接事件
            key = iter.next();
            iter.remove();
            try {
              if (key.isValid()) {
                if (key.isAcceptable())//如果该事件是连接事件
                  doAccept(key);
              }
            } catch (IOException e) {
            }
            key = null;
          }
        } catch (OutOfMemoryError e) {
          // we can run out of memory if we have too many threads
          // log the event and sleep for a minute and give 
          // some thread(s) a chance to finish
          LOG.warn("Out of Memory in server select", e);
          closeCurrentConnection(key, e);
          connectionManager.closeIdle(true);
          try { Thread.sleep(60000); } catch (Exception ie) {}
        } catch (Exception e) {
          closeCurrentConnection(key, e);
        }
      }
      LOG.info("Stopping " + Thread.currentThread().getName());

      synchronized (this) {
        try {
          acceptChannel.close();
          selector.close();
        } catch (IOException e) { }

        selector= null;
        acceptChannel= null;
        
        // close all connections
        connectionManager.stopIdleScan();
        connectionManager.closeAll();
      }
    }

//对连接事件进行处理
void
doAccept(SelectionKey key) throws InterruptedException, IOException, OutOfMemoryError { ServerSocketChannel server = (ServerSocketChannel) key.channel(); SocketChannel channel; while ((channel = server.accept()) != null) { channel.configureBlocking(false); channel.socket().setTcpNoDelay(tcpNoDelay); channel.socket().setKeepAlive(true); Reader reader = getReader(); Connection c = connectionManager.register(channel);//把与客户端连接的管道封装成Connection key.attach(c); // so closeCurrentConnection can get the object reader.addConnection(c);//将客户端请求连接的通道加入到Reader,监听用户发来的请求。 } }

Reader:Reader也是Thread类的子类,通过start()启动该线程,并运行该线程的run()方法:

    public void run() {
        LOG.info("Starting " + Thread.currentThread().getName());
        try {
          doRunLoop();
        } finally {
          try {
            readSelector.close();
          } catch (IOException ioe) {
            LOG.error("Error closing read selector in " + Thread.currentThread().getName(), ioe);
          }
        }
      }

      private synchronized void doRunLoop() {
        while (running) {
          SelectionKey key = null;
          try {
            // consume as many connections as currently queued to avoid
            // unbridled acceptance of connections that starves the select
            int size = pendingConnections.size();//在Listner类中通过reader.addConnection(c)加入到该阻塞队列中
            for (int i=size; i>0; i--) {//遍历处理用户的连接事件,并监听用户发来的请求
              Connection conn = pendingConnections.take();
              conn.channel.register(readSelector, SelectionKey.OP_READ, conn);
            }
            readSelector.select();

            Iterator<SelectionKey> iter = readSelector.selectedKeys().iterator();
            while (iter.hasNext()) {
              key = iter.next();
              iter.remove();
              if (key.isValid()) {
                if (key.isReadable()) {//判断该事件是不是读事件,并处理该读事件
                  doRead(key);
                }
              }
              key = null;
            }
          } catch (InterruptedException e) {
            if (running) {                      // unexpected -- log it
              LOG.info(Thread.currentThread().getName() + " unexpectedly interrupted", e);
            }
          } catch (IOException ex) {
            LOG.error("Error in Reader", ex);
          }
        }
      }
void doRead(SelectionKey key) throws InterruptedException {
      int count = 0;
      Connection c = (Connection)key.attachment();//因为Connection也保存着与客户端的连接,因此这里提取了Connection,把处理细节交给Connection
      if (c == null) {
        return;  
      }
      c.setLastContact(Time.now());
      
      try {
        count = c.readAndProcess();
      } catch (InterruptedException ieo) {
        LOG.info(Thread.currentThread().getName() + ": readAndProcess caught InterruptedException", ieo);
        throw ieo;
      } catch (Exception e) {
        // a WrappedRpcServerException is an exception that has been sent
        // to the client, so the stacktrace is unnecessary; any other
        // exceptions are unexpected internal server errors and thus the
        // stacktrace should be logged
        LOG.info(Thread.currentThread().getName() + ": readAndProcess from client " +
            c.getHostAddress() + " threw exception [" + e + "]",
            (e instanceof WrappedRpcServerException) ? null : e);
        count = -1; //so that the (count < 0) block is executed
      }
      if (count < 0) {
        closeConnection(c);
        c = null;
      }
      else {
        c.setLastContact(Time.now());
      }
    } 
Connection类中通过channelRead(channel, data)读取客户端发送的数据,并将读取的数据通过processOneRpc(data.array())方法处理逻辑过程,
processOneRpc通过调用processRpcRequest(RpcRequestHeaderProto header,DataInputStream dis)方法,
在processRpcRequest方法中封装成Call数据对象,并加入callQueue.put(call)队列中。

(3)实现客户端的请求的服务,得到客户端请求的结果数据

Handler类实现客户端请求的服务,通过从callQueue队列获取客户端RPC请求Call对象,并调用抽象方法call处理请求。

抽象方法call的实现在WritableRpcEngine类的内部类Server类,Server类是继承RPC.Server,是RPC服务调用的具体实现并定义相关协议

下面是call方法的具体实现:

public Writable call(org.apache.hadoop.ipc.RPC.Server server,
          String protocolName, Writable rpcRequest, long receivedTime)
          throws IOException, RPC.VersionMismatch {

        Invocation call = (Invocation)rpcRequest;
        if (server.verbose) log("Call: " + call);

        // Verify writable rpc version
        if (call.getRpcVersion() != writableRpcVersion) {
          // Client is using a different version of WritableRpc
          throw new RpcServerException(
              "WritableRpc version mismatch, client side version="
                  + call.getRpcVersion() + ", server side version="
                  + writableRpcVersion);
        }

        long clientVersion = call.getProtocolVersion();
        final String protoName;
        ProtoClassProtoImpl protocolImpl;
        if (call.declaringClassProtocolName.equals(VersionedProtocol.class.getName())) {
          // VersionProtocol methods are often used by client to figure out
          // which version of protocol to use.
          //
          // Versioned protocol methods should go the protocolName protocol
          // rather than the declaring class of the method since the
          // the declaring class is VersionedProtocol which is not 
          // registered directly.
          // Send the call to the highest  protocol version
          VerProtocolImpl highest = server.getHighestSupportedProtocol(
              RPC.RpcKind.RPC_WRITABLE, protocolName);
          if (highest == null) {
            throw new RpcServerException("Unknown protocol: " + protocolName);
          }
          protocolImpl = highest.protocolTarget;
        } else {
          protoName = call.declaringClassProtocolName;

          // Find the right impl for the protocol based on client version.
          ProtoNameVer pv = 
              new ProtoNameVer(call.declaringClassProtocolName, clientVersion);
          protocolImpl = 
              server.getProtocolImplMap(RPC.RpcKind.RPC_WRITABLE).get(pv);
          if (protocolImpl == null) { // no match for Protocol AND Version
             VerProtocolImpl highest = 
                 server.getHighestSupportedProtocol(RPC.RpcKind.RPC_WRITABLE, 
                     protoName);
            if (highest == null) {
              throw new RpcServerException("Unknown protocol: " + protoName);
            } else { // protocol supported but not the version that client wants
              throw new RPC.VersionMismatch(protoName, clientVersion,
                highest.version);
            }
          }
        }
          

          // Invoke the protocol method
       long startTime = Time.now();
       int qTime = (int) (startTime-receivedTime);
       Exception exception = null;
       try {
          Method method =
              protocolImpl.protocolClass.getMethod(call.getMethodName(),
              call.getParameterClasses());
          method.setAccessible(true);
          server.rpcDetailedMetrics.init(protocolImpl.protocolClass);
          Object value = 
              method.invoke(protocolImpl.protocolImpl, call.getParameters());
          if (server.verbose) log("Return: "+value);
          return new ObjectWritable(method.getReturnType(), value);

        } catch (InvocationTargetException e) {
          Throwable target = e.getTargetException();
          if (target instanceof IOException) {
            exception = (IOException)target;
            throw (IOException)target;
          } else {
            IOException ioe = new IOException(target.toString());
            ioe.setStackTrace(target.getStackTrace());
            exception = ioe;
            throw ioe;
          }
        } catch (Throwable e) {
          if (!(e instanceof IOException)) {
            LOG.error("Unexpected throwable object ", e);
          }
          IOException ioe = new IOException(e.toString());
          ioe.setStackTrace(e.getStackTrace());
          exception = ioe;
          throw ioe;
        } finally {
         int processingTime = (int) (Time.now() - startTime);
         if (LOG.isDebugEnabled()) {
           String msg = "Served: " + call.getMethodName() +
               " queueTime= " + qTime +
               " procesingTime= " + processingTime;
           if (exception != null) {
             msg += " exception= " + exception.getClass().getSimpleName();
           }
           LOG.debug(msg);
         }
         String detailedMetricsName = (exception == null) ?
             call.getMethodName() :
             exception.getClass().getSimpleName();
         server.rpcMetrics.addRpcQueueTime(qTime);
         server.rpcMetrics.addRpcProcessingTime(processingTime);
         server.rpcDetailedMetrics.addProcessingTime(detailedMetricsName,
             processingTime);
       }
      }
View Code

通过调用RPC服务得到客户端请求的结果value,使用Responder类将结果返回给客户端。下面是Handler类run()方法中部分代码

      CurCall.set(null);//处理完call请求,故将当前处理call表示标志为Null
          synchronized (call.connection.responseQueue) {
            // setupResponse() needs to be sync'ed together with 
            // responder.doResponse() since setupResponse may use
            // SASL to encrypt response data and SASL enforces
            // its own message ordering.
            setupResponse(buf, call, returnStatus, detailedErr, 
                value, errorClass, error);//将返回值封装到输出流中
            
            // Discard the large buf and reset it back to smaller size 
            // to free up heap
            if (buf.size() > maxRespSize) {
              LOG.warn("Large response size " + buf.size() + " for call "
                  + call.toString());
              buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE);
            }
            responder.doRespond(call);//将返回请求call加入队列中,然后在Responder类中一一处理。
}

(4)返回客户端的请求结果

Responder类:负责返回客户端请求的结果,通过NIO注册OP_WRITE写事件,将结果返回给客户端。

每处理完一个请求,就会调用Responder中doRespond方法处理请求结果。

    void doRespond(Call call) throws IOException {
      synchronized (call.connection.responseQueue) {
        call.connection.responseQueue.addLast(call);
        if (call.connection.responseQueue.size() == 1) {
          processResponse(call.connection.responseQueue, true);
        }
      }
    }

可以看到上述方法又调用processResponse方法处理请求结果,这里将请求结果对象call注册OP_WRITE写事件,通过NIO返回给客户端;

channel.register(writeSelector, SelectionKey.OP_WRITE, call);

而Responder的run方法和doRunLoop方法检测OP_WRITE写事件,并通过doAsyncWrite方法处理该事件

public void run() {
      LOG.info(Thread.currentThread().getName() + ": starting");
      SERVER.set(Server.this);
      try {
        doRunLoop();
      } finally {
        LOG.info("Stopping " + Thread.currentThread().getName());
        try {
          writeSelector.close();
        } catch (IOException ioe) {
          LOG.error("Couldn't close write selector in " + Thread.currentThread().getName(), ioe);
        }
      }
    }
    
    private void doRunLoop() {
      long lastPurgeTime = 0;   // last check for old calls.

      while (running) {
        try {
          waitPending();     // If a channel is being registered, wait.
          writeSelector.select(PURGE_INTERVAL);
          Iterator<SelectionKey> iter = writeSelector.selectedKeys().iterator();
          while (iter.hasNext()) {
            SelectionKey key = iter.next();
            iter.remove();
            try {
              if (key.isValid() && key.isWritable()) {
                  doAsyncWrite(key);
              }
            } catch (IOException e) {
              LOG.info(Thread.currentThread().getName() + ": doAsyncWrite threw exception " + e);
            }
          }
          long now = Time.now();
          if (now < lastPurgeTime + PURGE_INTERVAL) {
            continue;
          }
          lastPurgeTime = now;
          //
          // If there were some calls that have not been sent out for a
          // long time, discard them.
          //
          if(LOG.isDebugEnabled()) {
            LOG.debug("Checking for old call responses.");
          }
          ArrayList<Call> calls;
          
          // get the list of channels from list of keys.
          synchronized (writeSelector.keys()) {
            calls = new ArrayList<Call>(writeSelector.keys().size());
            iter = writeSelector.keys().iterator();
            while (iter.hasNext()) {
              SelectionKey key = iter.next();
              Call call = (Call)key.attachment();
              if (call != null && key.channel() == call.connection.channel) { 
                calls.add(call);
              }
            }
          }
          
          for(Call call : calls) {
            doPurge(call, now);
          }
        } catch (OutOfMemoryError e) {
          //
          // we can run out of memory if we have too many threads
          // log the event and sleep for a minute and give
          // some thread(s) a chance to finish
          //
          LOG.warn("Out of Memory in server select", e);
          try { Thread.sleep(60000); } catch (Exception ie) {}
        } catch (Exception e) {
          LOG.warn("Exception in Responder", e);
        }
      }
    }

doAsyncWrite方法还是通过调用processResponse方法处理结果,processResponse方法调用channelWrite将结果返回给客户端,当不能一次性返回时,在processResponse方法里将返回结果再次注册OP_WRITE写事件,因而形成一个循环使得数据能全部返回给客户端。

 

posted @ 2016-07-11 01:27  z.arbitrary  阅读(529)  评论(0编辑  收藏  举报