数据挖掘领域十大经典算法以及适用领域

1.Adaboost

Adaboost算法是一种提升方法,将多个弱分类器,组合成强分类器。
AdaBoost,是英文”Adaptive Boosting“(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。
它的自适应在于:前一个弱分类器分错的样本的权值(样本对应的权值)会得到加强,权值更新后的样本再次被用来训练下一个新的弱分类器。在每轮训练中,用总体(样本总体)训练新的弱分类器,产生新的样本权值、该弱分类器的话语权,一直迭代直到达到预定的错误率或达到指定的最大迭代次数。
总体——样本——个体三者间的关系需要搞清除
总体N。样本:{ni}i从1到M。个体:如n1=(1,2),样本n1中有两个个体。

算法原理

(1)初始化训练数据(每个样本)的权值分布:如果有N个样本,则每一个训练的样本点最开始时都被赋予相同的权重:1/N。
(2)训练弱分类器。具体训练过程中,如果某个样本已经被准确地分类,那么在构造下一个训练集中,它的权重就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。同时,得到弱分类器对应的话语权。然后,更新权值后的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
(3)将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,分类误差率小的弱分类器的话语权较大,其在最终的分类函数中起着较大的决定作用,而分类误差率大的弱分类器的话语权较小,其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的比例较大,反之较小。

优点

(1)精度很高的分类器
(2)提供的是框架,可以使用各种方法构建弱分类器
(3)简单,不需要做特征筛选
(4)不用担心过度拟合

实际应用

(1)用于二分类或多分类
(2)特征选择
(3)分类人物的baseline

 

2.C4.5

C4.5是决策树算法的一种。决策树算法作为一种分类算法,目标就是将具有p维特征的n个样本分到c个类别中去。常见的决策树算法有ID3,C4.5,CART。

C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。

优点

产生的分类规则易于理解,准确率较高。

缺点

在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

 

3. K-Means算法

又叫K-均值算法,是非监督学习中的聚类算法。

基本思想

k-means算法比较简单。在k-means算法中,用cluster来表示簇;容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:

选取k个初始质心(作为初始cluster,每个初始cluster只包含一个点);
repeat:
对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster;
重新计算k个cluster对应的质心(质心是cluster中样本点的均值);
until 质心不再发生变化

repeat的次数决定了算法的迭代次数。

 

优点

  1. 简单、快速;
  2. 对大数据集有较高的效率并且是可伸缩性的;
  3. 时间复杂度近于线性,适合挖掘大规模数据集。

缺点

  1. k-means是局部最优,因而对初始质心的选取敏感;
  2. 选择能达到目标函数最优的k值是非常困难的。

4.Apriori算法

先验算法(Apriori Algorithm)是关联规则学习的经典算法之一。先验算法的设计目的是为了处理包含交易信息内容的数据库(例如,顾客购买的商品清单,或者网页常访清单。)而其他的算法则是设计用来寻找无交易信息(如Winepi算法和Minepi算法)或无时间标记(如DNA测序)的数据之间的联系规则。

在关联式规则中,一般对于给定的项目集合(例如,零售交易集合,每个集合都列出的单个商品的购买信息),算法通常尝试在项目集合中找出至少有C个相同的子集。先验算法采用自底向上的处理方法,即频繁子集每次只扩展一个对象(该步骤被称为候选集产生),并且候选集由数据进行检验。当不再产生匹配条件的扩展对象时,算法终止。

5.EM算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

 

6.PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7.K-邻近算法/kNN

又叫K-邻近算法,是监督学习中的一种分类算法。目的是根据已知类别的样本点集求出待分类的数据点类别。

kNN的思想很简单:在训练集中选取离输入的数据点最近的k个邻居,根据这个k个邻居中出现次数最多的类别(最大表决规则),作为该数据点的类别。kNN算法中,所选择的邻居都是已经正确分类的对象。

优点

理论成熟,思想简单,既可以用来做分类也可以用来做回归 ;
适合对稀有事件进行分类(例如:客户流失预测);
特别适合于多分类问题(multi-modal,对象具有多个类别标签,例如:根据基因特征来判断其功能分类), kNN比SVM的表现要好。

缺点

当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数;
计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点;
可理解性差,无法给出像决策树那样的规则。

8.朴素贝叶斯算法

NaïveBayes算法,又叫朴素贝叶斯算法,朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

朴素贝叶斯常用的三个模型有:

  • 高斯模型:处理特征是连续型变量的情况
  • 多项式模型:最常见,要求特征是离散数据
  • 伯努利模型:要求特征是离散的,且为布尔类型,即true和false,或者1和0

9.CART

CART与C4.5类似,是决策树算法的一种。此外,常见的决策树算法还有ID3,这三者的不同之处在于特征的划分:

  • ID3:特征划分基于信息增益
  • C4.5:特征划分基于信息增益比
  • CART:特征划分基于基尼指数

基本思想

CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布。

CART算法由以下两步组成:

决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;
决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准。
CART决策树的生成就是递归地构建二叉决策树的过程。CART决策树既可以用于分类也可以用于回归。本文我们仅讨论用于分类的CART。对分类树而言,CART用Gini系数最小化准则来进行特征选择,生成二叉树。 CART生成算法如下:

输入:训练数据集D,停止计算的条件:
输出:CART决策树。

根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构建二叉决策树:

设结点的训练数据集为D,计算现有特征对该数据集的Gini系数。此时,对每一个特征A,对其可能取的每个值a,根据样本点对A=a的测试为“是”或 “否”将D分割成D1和D2两部分,计算A=a时的Gini系数。
在所有可能的特征A以及它们所有可能的切分点a中,选择Gini系数最小的特征及其对应的切分点作为最优特征与最优切分点。依最优特征与最优切分点,从现结点生成两个子结点,将训练数据集依特征分配到两个子结点中去。
对两个子结点递归地调用步骤l~2,直至满足停止条件。
生成CART决策树。
算法停止计算的条件是结点中的样本个数小于预定阈值,或样本集的Gini系数小于预定阈值(样本基本属于同一类),或者没有更多特征。

10.SVM

SVM(Support Vector Machine)中文名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。支持向量机可以分为线性核非线性两大类。其主要思想为找到空间中的一个更够将所有数据样本划开的超平面,并且使得本本集中所有数据到这个超平面的距离最短。

posted @ 2021-03-05 16:13  aoao2239  阅读(910)  评论(0)    收藏  举报