高性能计算-CUDA单流/多流调度(24)
1. 介绍:
(1) 用CUDA计算 pow(sin(id),2)+ pow(cos(id),2)的结果
(2) 对比单流(同步传输、异步传输)、多流深度优先调度、多流广度优先调度的效率(包含数据传输和计算)
核心代码
1. 用CUDA计算 pow(sin(id),2)+ pow(cos(id),2)的结果
2. 对比单流(同步传输、异步传输)、多流深度优先调度、多流广度优先调度的效率(包含数据传输和计算)
3. 使用接口错误检查宏
*/
#include <stdio.h>
#define CUDA_ERROR_CHECK    //API检查控制宏
#define BLOCKSIZE 256
int N = 1<<28;              //数据个数
int NBytes = N*sizeof(float); //数据字节数
//宏定义检查API调用是否出错
#define CudaSafecCall(err) __cudaSafeCall(err,__FILE__,__LINE__)
inline void __cudaSafeCall(cudaError_t err,const char* file,const int line)
{
    #ifdef CUDA_ERROR_CHECK
    if(err!=cudaSuccess)
    {
        fprintf(stderr,"cudaSafeCall failed at %s:%d :(%d) %s\n",file,line,err,cudaGetErrorString(err));
        exit(-1);
    }
    #endif
}
//宏定义检查获取流中的执行错误,主要是对核函数
#define CudaCheckError() _cudaCheckError(__FILE__,__LINE__)
inline void _cudaCheckError(const char * file,const int line)
{
    #ifdef CUDA_ERROR_CHECK
    cudaError_t err = cudaGetLastError();
    if(err != cudaSuccess)
    {
        fprintf(stderr,"cudaCheckError failed at %s:%d :(%d) %s\n",file,line,err,cudaGetErrorString(err));
        exit(-1);
    }
    #endif
}
__global__ void kernel_func(float * arr,int offset,const int n)
{
    int id = offset + threadIdx.x + blockIdx.x * blockDim.x;
    if(id<n)
        arr[id] = pow(sinf(id),2) + pow(cosf(id),2);
}
//单流主机非锁页内存,同步传输
float gpu_base()
{
    //开辟主机非锁页内存空间
    float* hostA,*deviceA;
    hostA = (float*)calloc(N,sizeof(float));
    CudaSafecCall(cudaMalloc((void**)&deviceA,NBytes));
    
    float gpuTime = 0.0;
    cudaEvent_t start,end;
    CudaSafecCall(cudaEventCreate(&start));
    CudaSafecCall(cudaEventCreate(&end));
    CudaSafecCall(cudaEventRecord(start));
    
    CudaSafecCall(cudaMemcpy(deviceA,hostA,NBytes,cudaMemcpyHostToDevice));
    kernel_func<<<(N-1)/BLOCKSIZE + 1,BLOCKSIZE>>>(deviceA,0,N);
    CudaCheckError();
    CudaSafecCall(cudaEventRecord(end));
    CudaSafecCall(cudaEventSynchronize(end));
    CudaSafecCall(cudaEventElapsedTime(&gpuTime,start,end));
    CudaSafecCall(cudaEventDestroy(start));
    CudaSafecCall(cudaEventDestroy(end));
    CudaSafecCall(cudaMemcpy(hostA,deviceA,NBytes,cudaMemcpyDeviceToHost));
    printf("gpu_base 单流非锁页内存,数据传输和计算耗时 %f ms\n",gpuTime);
    CudaSafecCall(cudaFree(deviceA));
    free(hostA);
    return gpuTime;
}
//单流主机锁页内存,异步传输
float gpu_base_pinMem()
{
    //开辟主机锁页内存空间
    float* hostA,*deviceA;
    CudaSafecCall(cudaMallocHost((void**)&hostA,NBytes));
    CudaSafecCall(cudaMalloc((void**)&deviceA,NBytes));
    
    float gpuTime = 0.0;
    cudaEvent_t start,end;
    CudaSafecCall(cudaEventCreate(&start));
    CudaSafecCall(cudaEventCreate(&end));
    CudaSafecCall(cudaEventRecord(start));
    
    CudaSafecCall(cudaMemcpyAsync(deviceA,hostA,NBytes,cudaMemcpyHostToDevice));
    kernel_func<<<(N-1)/BLOCKSIZE + 1,BLOCKSIZE>>>(deviceA,0,N);
    CudaCheckError();
    CudaSafecCall(cudaEventRecord(end));
    CudaSafecCall(cudaEventSynchronize(end));
    CudaSafecCall(cudaEventElapsedTime(&gpuTime,start,end));
    CudaSafecCall(cudaEventDestroy(start));
    CudaSafecCall(cudaEventDestroy(end));
    CudaSafecCall(cudaMemcpyAsync(hostA,deviceA,NBytes,cudaMemcpyDeviceToHost));
    printf("gpu_base_pinMem 单流锁页内存,数据传输和计算耗时 %f ms\n",gpuTime);
    CudaSafecCall(cudaFreeHost(hostA));
    CudaSafecCall(cudaFree(deviceA));
    return gpuTime;
}
//多流深度优先调度
float gpu_MStream_deep(int nStreams)
{
    //开辟主机非锁页内存空间
    float* hostA,*deviceA;
    //异步传输必须用锁页主机内存
    CudaSafecCall(cudaMallocHost((void**)&hostA,NBytes));
    CudaSafecCall(cudaMalloc((void**)&deviceA,NBytes));
    
    float gpuTime = 0.0;
    cudaEvent_t start,end;
    cudaStream_t* streams = (cudaStream_t*)calloc(nStreams,sizeof(cudaStream_t));
    for(int i=0;i<nStreams;i++)
        CudaSafecCall(cudaStreamCreate(streams+i));
    CudaSafecCall(cudaEventCreate(&start));
    CudaSafecCall(cudaEventCreate(&end));
    CudaSafecCall(cudaEventRecord(start));
    
    //传输、计算,流间最多只有一个传输和一个计算同时进行
    // 每个流处理的数据量
    int nByStream = N/nStreams;
    for(int i=0;i<nStreams;i++)
    {
        int offset = i * nByStream;
        CudaSafecCall(cudaMemcpyAsync(deviceA+offset,hostA+offset,nByStream*sizeof(float),cudaMemcpyHostToDevice,streams[i]));
        kernel_func<<<(nByStream-1)/BLOCKSIZE + 1,BLOCKSIZE,0,streams[i]>>>(deviceA,offset,(i+1)*nByStream);
        CudaCheckError();
        CudaSafecCall(cudaMemcpyAsync(hostA+offset,deviceA+offset,nByStream*sizeof(float),cudaMemcpyDeviceToHost,streams[i]));
    }
    for(int i=0;i<nStreams;i++)
        CudaSafecCall(cudaStreamSynchronize(streams[i]));
    CudaSafecCall(cudaEventRecord(end));
    CudaSafecCall(cudaEventSynchronize(end));
    CudaSafecCall(cudaEventElapsedTime(&gpuTime,start,end));
    CudaSafecCall(cudaEventDestroy(start));
    CudaSafecCall(cudaEventDestroy(end));
    printf("gpu_MStream_deep %d个流深度优先调度,数据传输和计算耗时 %f ms\n",nStreams,gpuTime);
    for(int i=0;i<nStreams;i++)
        CudaSafecCall(cudaStreamDestroy(streams[i]));
    CudaSafecCall(cudaFreeHost(hostA));
    CudaSafecCall(cudaFree(deviceA));
    free(streams);
    return gpuTime;
}
//多流广度优先调度
float gpu_MStream_wide(int nStreams)
{
    //开辟主机非锁页内存空间
    float* hostA,*deviceA;
    //异步传输必须用锁页主机内存
    CudaSafecCall(cudaMallocHost((void**)&hostA,NBytes));
    CudaSafecCall(cudaMalloc((void**)&deviceA,NBytes));
    
    float gpuTime = 0.0;
    cudaEvent_t start,end;
    cudaStream_t* streams = (cudaStream_t*)calloc(nStreams,sizeof(cudaStream_t));
    for(int i=0;i<nStreams;i++)
        CudaSafecCall(cudaStreamCreate(streams+i));
    CudaSafecCall(cudaEventCreate(&start));
    CudaSafecCall(cudaEventCreate(&end));
    CudaSafecCall(cudaEventRecord(start));
    
    //传输、计算,流间并行
    // 每个流处理的数据量
    int nByStream = N/nStreams;
    for(int i=0;i<nStreams;i++)
    {
        int offset = i * nByStream;
        CudaSafecCall(cudaMemcpyAsync(deviceA+offset,hostA+offset,nByStream*sizeof(float),cudaMemcpyHostToDevice,streams[i]));
    }
    for(int i=0;i<nStreams;i++)
    {
        int offset = i * nByStream;
        kernel_func<<<(nByStream-1)/BLOCKSIZE + 1,BLOCKSIZE,0,streams[i]>>>(deviceA,offset,(i+1)*nByStream);
        CudaCheckError();
    }
    for(int i=0;i<nStreams;i++)
    {
        int offset = i * nByStream;
        CudaSafecCall(cudaMemcpyAsync(hostA+offset,deviceA+offset,nByStream*sizeof(float),cudaMemcpyDeviceToHost,streams[i]));
    }
    for(int i=0;i<nStreams;i++)
        CudaSafecCall(cudaStreamSynchronize(streams[i]));
    CudaSafecCall(cudaEventRecord(end));
    CudaSafecCall(cudaEventSynchronize(end));
    CudaSafecCall(cudaEventElapsedTime(&gpuTime,start,end));
    CudaSafecCall(cudaEventDestroy(start));
    CudaSafecCall(cudaEventDestroy(end));
    printf("gpu_MStream_wide %d个流广度优先调度,数据传输和计算耗时 %f ms\n",nStreams,gpuTime);
    for(int i=0;i<nStreams;i++)
        CudaSafecCall(cudaStreamDestroy(streams[i]));
    CudaSafecCall(cudaFreeHost(hostA));
    CudaSafecCall(cudaFree(deviceA));
    free(streams);
    return gpuTime;
}
int main(int argc,char* argv[])
{
    int nStreams = argc==2? atoi(argv[1]):4;
    //gpu默认单流,主机非锁页内存,同步传输
    float gpuTime1 = gpu_base();
    //gpu默认单流,主机锁页内存,异步传输
    float gpuTime2 = gpu_base_pinMem();
    //gpu多流深度优先调度,异步传输
    float gpuTime3 = gpu_MStream_deep(nStreams);
    //gpu多流广度优先调度,异步传输
    float gpuTime4 = gpu_MStream_wide(nStreams);
    printf("相比默认单流同步传输与计算,单流异步传输及运算加速比为 %f\n",nStreams,gpuTime1/gpuTime2);
    printf("相比默认单流同步传输与计算,%d 个流深度优先调度异步传输及运算加速比为 %f\n",nStreams,gpuTime1/gpuTime3);
    printf("相比默认单流同步传输与计算,%d 个流广度优先调度异步传输及运算加速比为 %f\n",nStreams,gpuTime1/gpuTime4);
    return 0;
}
3. 测试结果
各项测试耗时及与单流同步传输加速比
| 项目\流数量 | 1 | 4 | 8 | 16 | 32 | 64 | 
|---|---|---|---|---|---|---|
| 单流同步传输(耗时ms) | 306.7 | - | - | - | - | - | 
| 单流异步传输(耗时ms/加速比) | 199.4/1.53 | - | - | - | - | - | 
| 多流深度优先调度(耗时ms/加速比) | - | 151.04/2.06 | 129.95/2.29 | 131.49/2.32 | 123.08/2.49 | 126.48/2.45 | 
| 多流广度优先调度(耗时ms/加速比) | - | 149.29/2.09 | 129.6/2.3 | 134.55/2.27 | 122.82/2.49 | 126.42/2.45 | 
                    
                
                
            
        
浙公网安备 33010602011771号