• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
angetenar
博客园    首页    新随笔    联系   管理    订阅  订阅

非线性规划代码

对于非线性规划问题,可以使用Python中的优化库来进行求解。其中,scipy.optimize.minimize() 函数提供了多种非线性优化算法,可以用于求解非线性规划问题。下面是一个使用Scipy库进行非线性规划求解的示例代码:

pip install scipy

然后,可以使用以下代码编写非线性规划求解的Python代码:

点击查看代码
from scipy.optimize import minimize

# 定义目标函数
def objective(x):
    return (x[0] - 1)**2 + (x[1] - 2.5)**2

# 定义约束条件
def constraint(x):
    return x[0] - 2*x[1] + 2

# 定义初始值
x0 = [0, 0]

# 定义约束条件
constraint_eq = {'type': 'eq', 'fun': constraint}

# 求解非线性规划问题
res = minimize(objective, x0, constraints=constraint_eq)

# 打印结果
print('最小值:', res.fun)
print('变量取值:', res.x)

在上述代码中,我们定义了目标函数 objective 和约束条件 constraint。然后,使用 minimize 函数传入目标函数、初始值和约束条件进行非线性规划求解。最后,打印出最小值和变量的取值。

需要根据具体的非线性规划问题,调整代码中的目标函数、约束条件以及初始值。另外,minimize 函数还提供了许多其他参数和选项,可以根据实际需求进行配置。

posted @ 2023-08-21 21:25  定州刺猬  阅读(134)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3