Java多线程
多线程详解
一、概述
- 说起进程,就不得不说下程序。程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念
- 而进程则是执行程序的一次执行过程,它是一个动态的概念。是系统资源分配的单位
- 通常在一个进程中可以包含若干哥线程,当然一个进程中至少有一个线程,不然没有存在的意义。线程是cpu调度和执行的单位
注意:很多多线程是模拟出来的,真正的多线程是指有多个cpu,即多核,如服务器。如果是模拟出来的多线程,即在一个cpu的情况下,在同一个时间点,cpu只能执行一个代码,因为切换的很快,所以就有同时执行的错局(当然cpu多核也可以多线程)
本章核心概念
- 线程就是独立的执行路径
- 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程,gc线程;
- main()称之为主线程,为系统的入口,用于执行整个程序
- 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为的干预的
- 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
- 线程会带来额外的开销,如cpu调度时间,并发控制开销。
- 每个线程在自己的工作内存交互,内存控制不当回造成数据不一致
二、继承Thread类
Thread class--->继承Thread类(重点)
Runnable接口--->实现Runnable接口(重点)
Claalble接口--->实现Callable接口(了解)
Thread类
-
自定义线程类继承Thread类
-
重写run()方法,编写线程执行体
-
创建线程对象,调用start()方法启动线程
代码片段如下:
//创建线程方式一:继承Thread类,重写run()方法,调用start开启线程
//总结:注意,线程开启不一定立即执行,由cpu调度执行
public class TestThread1 extends Thread{
@Override
public void run() {
//run方法线程体
for (int i = 0; i < 20; i++) {
System.out.println("我在看代码----"+i);
}
}
public static void main(String[] args) {
//main线程,主线程
//创建一个线程对象
TestThread1 testThread1 = new TestThread1();
//调用start()方法开启线程
testThread1.start();
for (int i = 0; i < 20; i++) {
System.out.println("我在学习多线程---"+i);
}
}
}
三、网图下载
代码片如下:
//练习Thread,实现多线程同步下载图片
public class TestThread2 extends Thread{
private String url;//网络图片地址
private String name;//保存的文件名
public TestThread2(String url,String name){
this.url=url;
this.name=name;
}
// 下载图片线程的执行体
@Override
public void run() {
webDownloader webDownloader = new webDownloader();
webDownloader.downloader(url,name);
System.out.println("下载类文件名为:" + name);
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2(" https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy83NzA1NDQ0LTI0ZWU1ZTFhMmQ4ODc1YzkucG5n?x-oss-process=image/format,png","1.jpg");
TestThread2 t2 = new TestThread2(" https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy83NzA1NDQ0LTI0ZWU1ZTFhMmQ4ODc1YzkucG5n?x-oss-process=image/format,png","2.jpg");
TestThread2 t3 = new TestThread2(" https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy83NzA1NDQ0LTI0ZWU1ZTFhMmQ4ODc1YzkucG5n?x-oss-process=image/format,png","3.jpg");
//先下载t1
t1.start();
//然后是t2
t2.start();
//最后是t1
t3.start();
}
}
//下载器
class webDownloader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
四、实现Runnable接口
- 定义MyRunnable类实现Runnable接口
- 实现run()方法,编写线程执行体
- 创建线程对象,调用start()方法启动线程
//创建线程方式2:实现runnalbe接口,重写run方法,执行线程需要丢入runnable接口实现类,调用start方法。
public class TestThread3 implements Runnable{
@Override
public void run() {
//run方法线程体
for (int i = 0; i < 1000; i++) {
System.out.println("我在看代码----"+i);
}
}
public static void main(String[] args) {
//创建runnalbe接口实现类对象
TestThread3 testThread3 = new TestThread3();
//创建线程对象,通过线程对象来开启我们的线程,代理
// Thread thread = new Thread(testThread3);
// thread.start();
new Thread(testThread3).start();
for (int i = 0; i < 1000; i++) {
System.out.println("我在学习多线程---"+i);
}
}
}
两个总结:
- 继承Thread类
- 子类继续Tread类具备多线程能力
- 启动线程:子类对象.start()
- 不建议使用:避免OOP单继承局限性
- 实现Runnable接口
- 实现接口Runnalbe具有多线程能力
- 启动线程:传入目标对象+Thread对象.start()
- 推进使用:避免单继承局限性,灵活方便,方便同一个对象被多个线程使用
五、初始并发问题
代码片段如下:
//多个线程同时操作同一个对象
//买火车票的例子
//发现问题:多个线程操作同一个资源的情况下,线程不安全,数据紊乱
public class TestThread4 implements Runnable {
//票数
private int ticketNmus =10;
@Override
public void run() {
while (true){
if (ticketNmus<0){
break;
}
//模拟延时
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticketNmus--+"票");
}
}
public static void main(String[] args) {
TestThread4 ticket = new TestThread4();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}
输出结果:
老师-->拿到了第10票
小明-->拿到了第9票
黄牛党-->拿到了第10票
小明-->拿到了第8票
老师-->拿到了第7票
黄牛党-->拿到了第6票
小明-->拿到了第5票
黄牛党-->拿到了第3票
老师-->拿到了第4票
黄牛党-->拿到了第2票
小明-->拿到了第0票
老师-->拿到了第1票
上述的结果会导致拿到重复的票
六、案例:龟兔赛跑
- 首先来个赛道距离,然后要离终点越来越近
- 判断比赛是否结束
- 打印出胜利者
- 龟兔赛跑开始
- 故事中是乌龟赢的,兔子需要睡觉,所以我们来模拟兔子睡觉
- 终于乌龟赢的比赛
代码片段如下:
//模拟龟兔赛跑
public class Race implements Runnable{
//胜利者
private static String winner;
@Override
public void run() {
for (int i = 0; i <= 100; i++) {
//模拟兔子休息
if (Thread.currentThread().getName().equals("兔子")&& i%10==0){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//比赛是否结束
boolean flag = gameOver(i);
//如果比赛结束了,就停止程序
if (flag){
break;
}
System.out.println(Thread.currentThread().getName() + "-->跑了" + i + "步");
}
}
//判断是否完成比赛
private boolean gameOver(int steps){
//判断是否有胜利这
if (winner!=null){//已经存在胜利者了
return true;
}{
if (steps>=100){
winner=Thread.currentThread().getName();
System.out.println("winner is "+winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
Race race = new Race();
new Thread(race,"兔子").start();
new Thread(race,"乌龟").start();
}
}
实现Callable接口
- 实现Callable接口,需要返回值类型
- 重写call方法,需要抛出异常
- 创建目标对象
- 创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(1);
- 提交执行:Future
result1 = ser.submit(t1); - 获取结果:boolean r1 = result1.get();
- 关闭服务:ser.shutdownNow();
代码片段如下:
//线程创建方式三:实现callable接口
/*
* callable的好处
* 1.可以定义返回值
* 2.可以抛出异常*/
public class TestCallable implements Callable<Boolean> {
private String url;//网络图片地址
private String name;//保存的文件名
public TestCallable(String url, String name) {
this.url = url;
this.name = name;
}
// 下载图片线程的执行体
@Override
public Boolean call() {
webDownloader webDownloader = new webDownloader();
webDownloader.downloader(url, name);
System.out.println("下载类文件名为:" + name);
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
TestCallable t1 = new TestCallable(" https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy83NzA1NDQ0LTI0ZWU1ZTFhMmQ4ODc1YzkucG5n?x-oss-process=image/format,png", "1.jpg");
TestCallable t2 = new TestCallable(" https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy83NzA1NDQ0LTI0ZWU1ZTFhMmQ4ODc1YzkucG5n?x-oss-process=image/format,png", "2.jpg");
TestCallable t3 = new TestCallable(" https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy83NzA1NDQ0LTI0ZWU1ZTFhMmQ4ODc1YzkucG5n?x-oss-process=image/format,png", "3.jpg");
//创建执行服务:
ExecutorService ser = Executors.newFixedThreadPool(3);
Future<Boolean> result1 = ser.submit(t1);
Future<Boolean> result2 = ser.submit(t2);
Future<Boolean> result3 = ser.submit(t3);
boolean r1 = result1.get();
boolean r2 = result2.get();
boolean r3 = result3.get();
ser.shutdownNow();
}
}
//下载器
class webDownloader {
//下载方法
public void downloader(String url, String name) {
try {
FileUtils.copyURLToFile(new URL(url), new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
静态代理模式
代码片段如下:
//静态代理模式总结:
//真实对象和代理对象都要实现同一个接口
//代理对象要代理真实角色
//好处:
//代理对象可以做很多真实对象做不了的事情
//真实对象专注做自己的事情
public class StaticProxy {
public static void main(String[] args) {
//线程就相当于一个静态代理,他的原理和这个婚庆公司是一样的,传入一个真实对象,帮真实对象做一些其他事情
new Thread(()-> System.out.println("我爱你")).start();
new WeddingCompany(new You()).HappyMarry();
}
}
interface Marry{
//人间四大喜事
//久旱逢甘露
//他乡遇故知
//洞房花烛夜
//金榜题名时
void HappyMarry();
}
//真实角色,你去结婚
class You implements Marry{
@Override
public void HappyMarry() {
System.out.println("秦老师要结婚了,超开心");
}
}
//代理角色,帮助你结婚
class WeddingCompany implements Marry{
//代理谁-->真实对象目标角色
private Marry target;
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry();//这是真实对象
after();
}
private void after() {
System.out.println("结婚之后,收尾款");
}
private void before() {
System.out.println("结婚之前,布置现场");
}
}
Lamda表达式
-
λ希腊字母表中排序第十一位的字母,英语名称为Lambda
-
避免匿名内部类定义过多
-
其实质属于函数式编程的概念
-
为什么要使用lambda表达式
- 避免匿名内部类定义过多
- 可以让你的代码看起来很简洁
- 去掉一堆没有意义的代码,只留下核心的逻辑
-
理解Functional Interface(函数式接口)是学习Java8 lambda表达式的关键所在
-
函数式接口的定义:
-
任何接口,如果只包含唯一一个抽象方法,那么它就是一个函数式接口
public interface Runnable{
public abstract void run();
}
-
对于函数式接口,我们可以通过lambda表达式来创建该接口的对象
-
代码片段如下:
/*
*推导lambda表达式
* */
public class TestLambda1 {
//3静态内部类
static class Like2 implements ILike{
@Override
public void lambda() {
System.out.println("I like lambda2");
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lambda();
like= new Like2();
like.lambda();
//4.局部内部类
class Like3 implements ILike{
@Override
public void lambda() {
System.out.println("I like lambda3");
}
}
like = new Like3();
like.lambda();
//匿名内部类,没有类的名称,必须借助接口或者父类
like = new ILike() {
@Override
public void lambda() {
System.out.println("I like lambda4");
}
};
like.lambda();
//6.用lambda简化
like = ()->{
System.out.println("I like lambda5");
};
like.lambda();
}
}
//1.定义一个函数式接口
interface ILike{
void lambda();
}
//2.实现类
class Like implements ILike{
@Override
public void lambda() {
System.out.println("I like lambda");
}
}
第二段个例子
public class TestLambda2 {
public static void main(String[] args) {
//1.lambda表示简化
Ilove love =(int a )->{
System.out.println("I love you--->"+a);
};
//简化1.参数类型
love = (a)->{
System.out.println("I love you--->"+a);
};
//简化2,简化括号
love= a -> {
System.out.println("I love you--->"+a);
};
//简化3.去掉花括号
love = a -> System.out.println("I love you--->"+a);
//总结:
//lambda表达式只能有一行代码的情况下才能简化称为一行,如果有多行,那么就用代码块包裹
//前提是接口为函数式接口
//多个参数也可以去掉参数类型,要去掉就都去掉,必须加上括号
love.love(521);
}
}
interface Ilove{
void love(int a);
}
class Love implements Ilove{
@Override
public void love(int a) {
System.out.println("I love you--->"+a);
}
}
线程停止

- 不推荐使用JDK提供的stop()、destroy()方法。【已废弃】
- 推进线程自己停下来
- 建议使用一个标志位进行终止变量当flag=false,则终止线程运行。
代码片段如下:
//测试stop
//1.建议线程正常停止-->利用次数,不建议死循环
//2.建议使用标志位-->设置一个标志位
//3.不要使用stop或者destroy等过时或者JDK不建议使用等方法
public class TestStop implements Runnable{
//1.设置一个表标识位
private boolean flag = true;
@Override
public void run() {
int i =0;
while (flag) {
System.out.println("run...Thread"+i++);
}
}
//2.设置一个公开等方法停止线程,转换标识位
public void stop(){
this.flag= false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for (int i = 0; i < 1000; i++) {
System.out.println("main"+i);
if (i==900){
//调用stop方法切换标识位,让线程停止
testStop.stop();
System.out.println("线程该停止了");
}
}
}
}
线程休眠_sleep
- Sleep(时间)指定当前线程阻塞的毫秒数
- sleep存在异常interruptedException
- sleep时间达到后线程进入就绪状态
- sleep可以模拟网络延时,倒计时等
- 每一个对象都有一个锁,sleep不会释放锁
代码片段如下
//模拟倒计时
public class TestSleep2 {
public static void main(String[] args) {
try {
tenDown();
} catch (InterruptedException e) {
e.printStackTrace();
}
//打印当前系统时间
Date statTime = new Date(System.currentTimeMillis());//获取系统当前时间
while (true) {
try {
Thread.sleep(1000);
System.out.println(new SimpleDateFormat("HH:mm:ss").format(statTime));
statTime = new Date(System.currentTimeMillis());//更新当前时间
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//模拟倒计时
public static void tenDown() throws InterruptedException {
int num =10;
while (true) {
Thread.sleep(1000);
System.out.println(num--);
if (num<=0){
break;
}
}
}
}
线程礼让_yield
- 礼让线程,让当前正在执行的线程暂停,但不阻塞
- 将线程从运行状态转为就绪状态
- 让cpu重新调度,礼让不一定成功!看cpu心情
代码片段如下:
//测试礼让线程
//礼让不一定成功,看cpu心情
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield,"A").start();
new Thread(myYield,"B").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield();//礼让
System.out.println(Thread.currentThread().getName()+"线程停止执行");
}
}
线程强制执行_join
- Join合并线程,待此线程执行完成后,再执行其他线程,其他线程阻塞
- 可以想象成插队
//测试join方法
//想象为插队
public class TestJoin implements Runnable {
@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println("线程VIP来了"+i);
}
}
public static void main(String[] args) throws InterruptedException {
//启动我们的线程
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
//主线程
for (int i = 0; i < 300; i++) {
if (i==200){
thread.join();//插队
}
System.out.println("main" + i);
}
}
}
观测线程状态
线程状态。 线程可以处于以下状态之一:
NEW
尚未启动的线程处于此状态。RUNNABLE
在Java虚拟机中执行的线程处于此状态。BLOCKED
被阻塞等待监视器锁定的线程处于此状态。WAITING
正在等待另一个线程执行特定动作的线程处于此状态。TIMED_WAITING
正在等待另一个线程执行动作达到指定等待时间的线程处于此状态。TERMINATED
已退出的线程处于此状态。
一个线程可以在给定时间点处于一个状态。 这些状态是不反映任何操作系统线程状态的虚拟机状态.
代码片段如下:
//观测测试线程的状态
public class TestState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("/////////");
});
// 观察状态
Thread.State state = thread.getState();
System.out.println(state);//new
//观察启动后
thread.start();//启动线程
state=thread.getState();
System.out.println(state);//Run
while (state!=Thread.State.TERMINATED){//只要线程不终止,就一直输出状态
Thread.sleep(100);
state=thread.getState();//更新线程状态
System.out.println(state);//输出状态
}
}
}
线程的优先级
- Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度器按照优先级决定应该调度哪个线程来执行
- 线程的优先级用数字表示,范围从1~10.
- Thread.Min_PRIORITY = 1;
- Thread.MAX_PRIORITY= 10;
- Thread.NORM_PRIORITY= 5;
- 使用以下方式改变或获取优先级
- getPriority().setPriority(int xxx)
代码片段如下:
//测试线程的优先级
public class TestPriority {
public static void main(String[] args) {
//主线程默认优先级
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
Thread t6 = new Thread(myPriority);
//先设置优先级,再启动
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(Thread.MAX_PRIORITY);//MAX_PRIORITY=10
t4.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
}
}
守护线程
- 线程分为用户线程和守护线程
- 虚拟机必须确保用户线程执行完毕
- 虚拟机不用等待守护线程执行完毕
- 如,后台记录操作日志,监控内存,垃圾回收等待
//测试守护线程
//上帝守护你
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true);//默认是false表示使用户线程,正常都线程都是用户线程。。。
thread.start();//上帝守护线程启动
new Thread(you).start(); //你 用户线程启动。。。
}
}
//上帝
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("上帝保佑着你");
}
}
}
//你
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 30000; i++) {
System.out.println("你一生都开心都活着");
}
System.out.println("=======goodbye!world========");//Hello,World;
}
}
线程同步机制
- 现实生活中,我们会遇到“同一个资源,多个人都想使用”的问题,比如,食堂排队打饭,每个人都想吃放,最天然的解决办法就是,排队,一个个来。
- 处理多线程问题式,多个线程访问同一个对象,并且某些线程还想修改这个对象。这时候我们就需要线程同步。线程同步其实就是一种等待机制,多个需要同时访问此对象的线程进入这个对象的等待池形成队列,等待前面线程使用完毕,下一个线程再使用。
线程同步
- 由于同一进程的多个线程恭喜同一块存储空间,在带来方便的同时,也带来了访问冲突问题,为了保证数据在方法中呗访问时的正确性,在访问时加入锁机制synchronized,当一个线程获得对象的排它锁,独占资源,其他线程必须等待,使用后释放锁即可。存在以下问题:
- 一个线程持有锁会导致其他所有需要此锁的线程挂起
- 在多线程竞争下,加锁,释放锁会导致比较多的上下文切换和调度延时,引起性能问题
- 如果一个优先级高的线程等待一个优先级低的线程释放锁 会导致优先级倒置,引起性能问题
三大不安全案例
代码片段如下:
例子1
//不安全的买票
//线程不安全,有负数
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket station = new BuyTicket();
new Thread(station,"苦逼的我").start();
new Thread(station,"牛逼的你们").start();
new Thread(station,"可恶的黄牛党").start();
}
}
class BuyTicket implements Runnable{
//票
private int ticketNums = 10;
boolean flag =true;//外部停止方式
@Override
public void run() {
//买票
while (flag){
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private void buy() throws InterruptedException {
//判断是否有票
if (ticketNums<=0){
flag = false;
return;
}
//模拟延时
Thread.sleep(100);
//买票
System.out.println(Thread.currentThread().getName()+"拿到"+ticketNums--);
}
}
例子二
//不安全的取钱
//两个人去银行取钱,账户
public class UnsafeBank {
public static void main(String[] args) {
//账户
Account account = new Account(100, "结婚基金");
Drawing you = new Drawing(account,50,"你");
Drawing wife = new Drawing(account,100,"妻子");
you.start();
wife.start();
}
}
//账户
class Account{
int money;//余额
String name;//卡名
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
//银行:模拟取款
class Drawing extends Thread{
Account account;//账户
//取了多少钱
int drawingMoney;
//现在手里有多少钱
int nowMoney;
public Drawing(Account account, int drawingMoney, String name) {
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
this.nowMoney = nowMoney;
}
//取钱
@Override
public void run() {
//判断有没有钱
if (account.money-drawingMoney<0){
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//sleep可以放大问题的发生性
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内余额= 余额-你取的钱
account.money = account.money-drawingMoney;
//你手里的钱
nowMoney=nowMoney+drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
//Thread.currentThread().getName()= this.getName()
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
}
例子三
//线程不安全的集合
public class UnsafeList {
public static void main(String[] args) throws InterruptedException {
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < 100000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
Thread.sleep(3000);
System.out.println(list.size());
}
}
同步方法及同步块
-
由于我们可以通过private关键字来保证数据对象只能呗方法访问,所以我们只需要针对方法提出一套机制,这套机制就是synchronized关键字,它包括两种用法:synchronized方法和synchronized块
同步方法:public synchronized void method(int args){}
-
synchronized方法控制对“对象”的访问,每个对象对应一把锁,每个synchronized方法都必须获得调用该方法的对象的锁才能执行,否则线程会阻塞,方法一旦执行,就独占该锁,直到该方法返回才释放锁,后面呗阻塞的线程才能获得这个锁,继续执行
缺陷:若将一个大的方法申明为synchronized将会影响效率
-
方法里面需要修改的内容才需要锁,锁的太多,浪费资源
同步块
- 同步块:synchronized(Obj){}
- Obj称之为 同步监视器
- Obj可以是任何对象,但是推进使用共享资源作为同步监视器
- 同步方法中无需指定同步监视器,因为同步方法的同步监视器就是this,就是这个对象本身,或者是class[反射中讲解]
- 同步监视器的执行过程
- 第一个线程访问,锁定同步监视器,执行其中代码
- 第二个线程访问,发现同步监视器被锁定,无法访问
- 第一个线程访问完毕,解锁同步监视器
- 第二个线程访问,发现同步监视器没有锁,然后锁定并访问
代码片段如下:
代码修改地方
买票
//synchronized 同步方法,锁的是this
private synchronized void buy() throws InterruptedException {
//判断是否有票
if (ticketNums<=0){
flag = false;
return;
}
//模拟延时
Thread.sleep(100);
//买票
System.out.println(Thread.currentThread().getName()+"拿到"+ticketNums--);
}
银行取钱
//取钱
//synchronized 默认锁的是this,是自身这个对象,当又新建了一个对象,就不关这个锁的事情了
@Override
public void run() {
//现在监视的就是you和wife的共享资源account里的钱了,所以如果一个进程进去修改了,另一个必须等待
//锁的对象就是变化的量,需要增删改查的对象
synchronized (account){
//判断有没有钱
if (account.money-drawingMoney<0){
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//sleep可以放大问题的发生性
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内余额= 余额-你取的钱
account.money = account.money-drawingMoney;
//你手里的钱
nowMoney=nowMoney+drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
//Thread.currentThread().getName()= this.getName()
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
}
集合
for (int i = 0; i < 100000; i++) {
new Thread(()->{
synchronized (list){
list.add(Thread.currentThread().getName());
}
}).start();
CopyOnWriteArrayList
- 也可以让线程安全的同步的一个集合类
代码片段如下:
//测试JUC安全类型的集合
public class TestJUC {
public static void main(String[] args) {
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
死锁
- 多个线程各自占用一些共享资源,并且互相等待其他线程占有的资源才能运行,而导致两个或者多个线程在等待对方释放资源,都停止执行的情形。某一个同步块同时拥有“两个以上对象的锁”时,就可能会发生“死锁”的问题
代码片段如下:
//死锁:多个线程互相抱着对方需要的资源,然后形成僵持
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0, "灰姑娘");
Makeup g2 = new Makeup(1, "白雪公主");
g1.start();
g2.start();
}
}
//口红
class Lipstick {
}
//镜子
class Mirror {
}
class Makeup extends Thread {
//需要的资源只有一份,用static来保证只有一份
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;//选择
String girlName;//使用化妆品的人
public Makeup(int choice, String girlName) {
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//化妆,互相持有对方的锁,就是需要拿到对方的资源
private void makeup() throws InterruptedException {
if (choice == 0) {
synchronized (lipstick) {//获得口红的锁
System.out.println(this.girlName + "获得口红的锁");
Thread.sleep(1000);
synchronized (mirror) {//一秒钟后想获得镜子
System.out.println(this.girlName + "获得镜子的锁");
}
}
} else {
synchronized (mirror) {//获得口红的锁
System.out.println(this.girlName + "获得镜子的锁");
Thread.sleep(2000);
synchronized (lipstick) {//一秒钟后想获得镜子
System.out.println(this.girlName + "获得口红的锁");
}
}
}
}
}
- 要想避免这种情况就不要互相抱着死锁,打破请求与保持,即在已经锁着一个资源的情况下在去要另一个线程
代码修改如下:
if (choice == 0) {
synchronized (lipstick) {//获得口红的锁
System.out.println(this.girlName + "获得口红的锁");
Thread.sleep(1000);
}
synchronized (mirror) {//一秒钟后想获得镜子
System.out.println(this.girlName + "获得镜子的锁");
}
} else {
synchronized (mirror) {//获得口红的锁
System.out.println(this.girlName + "获得镜子的锁");
Thread.sleep(2000);
}
synchronized (lipstick) {//一秒钟后想获得镜子
System.out.println(this.girlName + "获得口红的锁");
}
}
- 产生死锁的四个必要条件:
- 互斥条件:一个资源每次只能被一个进程使用
- 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放
- 不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺
- 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系
Lock锁
- 从JDK5.0开始,Java提供了更强大的线程同步机制——通过显式定义同步锁对来实现同步。同步锁使用Lock对象充当
- Java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具。锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象
- ReentrantLock类实现了Lock,它拥有与synchronized相同的并发性和内存语义,在实现线程安全的控制中,比较常用的是ReentrantLock,可以显时加锁、释放锁。
代码片段如下:
//测试Lock锁
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable {
int ticketNums = 10;
//定义lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true) {
try {
lock.lock();//加锁
if (ticketNums > 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNums--);
} else {
break;
}
} finally {
//解锁
lock.unlock();
}
}
}
}
- Lock是显式锁(手动开启和关闭锁,别忘记关闭锁)synchronized是隐式锁,出了作用域自动释放
- Lock只有代码块锁,synchronized有代码块锁和方法锁
- 使用Lock锁,JVm将花费将少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
- 优先使用顺序:
- Lock> 同步代码块(已经进入了方法体,分配了相应资源)>同步方法(在方法体之外)
消费者和生产者问题
- 应用场景:生产者和消费者问题
- 假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费
- 如果仓库中没有产品,则生产者将产品放入仓库,否则停止生产并等待,直仓库中的产品被消费者取走为止
- 如果仓库中放有产品,则消费者可以将产品取走消费,否则停止消费并等待,直到仓库中再次放入产品为止
这是一个线程同步问题,生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件
- 对于生产者,没有生产产品之前,要通知消费者等待,而生产了产品之后,又需要马上通知消费者消费
- 对于消费者,在消费之后,要通知生产者已经结束消费,需要生产新的产品以供消费,需要生产新的产品以供消费
- 在生产者消费者问题中,仅有synchronized是不够的
- Synchronized 可阻止并发更新同一个共享资源,实现了同步
- Synchronized 不能用来实现不同线程之间的消息传递(通信)
- Java提供了几个方法解决线程之间的通信问题

注意:均是Object类的方法,都只能在同步方法或者同步代码块中使用,否则会抛出异常lllegalMonitorStateException
解决方式
并发协作模型“生产者/消费者模式”--->管程法
- 生产者:负责生产数据的模块(可能是方法,对象,线程,进程)
- 消费者:负责处理数据的模块(可能是方法,对象,线程,进程)
- 缓冲区:消费者不能直接使用生产者的数据,他们之间又个“缓冲区”
生产者将生产好的数据放入缓冲区,消费者从缓冲区拿出数据
并发协作模型“生产者/消费者模式”--->信号灯法
管程法
代码片段如下:
//测试:生产者消费者模型-->利用缓冲区解决:管程法
//生产者,消费者,产品,缓冲区
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread{
SynContainer container;
public Productor(SynContainer container) {
this.container = container;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("生产了" + i + "只鸡");
container.push(new Chicken(i));
}
}
}
//消费者
class Consumer extends Thread{
SynContainer container;
public Consumer(SynContainer container) {
this.container = container;
}
//消费
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了第-->"+container.pop().id+"只鸡");
}
}
}
//产品
class Chicken{
int id;//产品编号
public Chicken(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer{
//需要一个容器大小
Chicken[] chickens = new Chicken[10];
//容器计数器
int count = 0 ;
//生产者放入产品
public synchronized void push(Chicken chicken){
//如果容器满了,就需要等待消费者消费
if (count==chickens.length){
//生产等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有满,我们就需要丢入产品
chickens[count] = chicken;
count++;
//可以通知消费者消费了
this.notify();
}
//消费者消费产品
public synchronized Chicken pop(){
//判断能否消费
if (count==0){
//等待生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果可以消费
count--;
Chicken chicken = chickens[count];
//吃完了,通知生产者生产
this.notify();
return chicken;
}
}
信号灯法
代码片段如下:
//测试生产者消费者问题2:信号灯法,标志位解决
public class TestPc2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者-->演员
class Player extends Thread{
TV tv;
public Player(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i%2==0){
this.tv.play("快乐大本营");
}else {
this.tv.play("b站:你想要的这里都有");
}
}
}
}
//消费者-->观众
class Watcher extends Thread{
TV tv;
public Watcher(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品-->节目
class TV{
//演员表演,观众等待 T
//观众观看,演员等待 F
String voice;//表演的节目
boolean flag = true;
//表演
public synchronized void play(String voice){
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了:"+voice);
//通知观众观看
this.notifyAll();//通知唤醒
this.voice= voice;
this.flag = !this.flag;
}
//观看
public synchronized void watch(){
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了:"+voice);
//通知演员表演
this.notifyAll();
this.flag = !this.flag;
}
}
线程池
- 背景:经常创建和销毁、使用量特别大的资源,比如并发情况下的线程,对性能影响很大。
- 思路:提前创建好多个线程,放入线程池中,使用时直接获取,使用完放回池中。类似生活中的公共交通工具
- 好处:
- 提高响应速度(减少了创建新线程的时间)
- 降低资源消耗(重复利用线程池中线程,不需要每次都创建)
- 便于线程管理(...)
- corePoolSize:核心池的大小
- maximumPoolSize:最大线程数
- keepAliveTime:线程没有任务时最多保持多长时间后会终止
- JDK5.0起提供了线程池相关API:ExecutorService和EXecutors
- ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor
- void execute(Runnalbe command):执行任务/命令,没有返回值,一般用来执行Runnable
Future submit(Callable task):执行任务,有返回值,一般用来执行Callable - void shutdown():关闭连接池
- Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池
代码片段如下:
//测试线程池
public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
//newFixedThreadPool 参数为:线程池大小
ExecutorService service = Executors.newFixedThreadPool(10);
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.关闭连接
service.shutdown();
}
}
class MyThread implements Runnable {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() );
}
}
总结
//回顾总结线程的创建
public class ThreadNew {
public static void main(String[] args) {
new MyThread1().start();
new Thread(new MytThread2()).start();
FutureTask<Integer> futureTask = new FutureTask<Integer>(new MyThread3());
new Thread(futureTask).start();
try {
Integer integer = futureTask.get();
System.out.println(integer);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
//1.继承Thread类
class MyThread1 extends Thread{
@Override
public void run() {
System.out.println("MyThread1");
}
}
//2.实现Runnable接口
class MytThread2 implements Runnable{
@Override
public void run() {
System.out.println("MyThread2");
}
}
//3.实现Callable接口
class MyThread3 implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("MyThread3");
return 1000;
}
}

浙公网安备 33010602011771号