模拟(十七) T10 另(数竞 related)
模拟(十七) T10 另:
设 \(A(\cos \theta, \sin \theta)\),故可知 \(\sin^2\theta = 2p\cos \theta\)。
对抛物线方程两边对 \(x\) 求导得:\(2yy'=2p\),故斜率 \(k = y'=\cfrac{p}{\sin \theta}\)
如图,易知 \(AB = \cfrac{1}{2}\),故 \(BM=\cfrac{\tan \angle BAM}{2}\)。当 \(R = AM = \sqrt{AB^2+BM^2}\) 最大时,易知 \(BM\) 最大。
而 \(\tan \angle BAM = \cot \angle NAO = \cot(\theta - \angle ANO) = \cfrac{1-k\tan \theta}{\tan \theta - k}\)
\(=\cfrac{1-\cfrac{p}{\cos \theta}}{\cfrac{\sin \theta}{\cos \theta} - \cfrac{p}{\sin \theta}} = \cfrac{\sin \theta \cos \theta - p\sin \theta}{\sin^2 \theta - p\cos \theta} = \cfrac{\sin \theta \cos \theta - \cfrac{sin^3 \theta}{2\cos \theta}}{\cfrac{1}{2}\sin^2 \theta}\)
\(=\cfrac{2}{\tan \theta} + \tan \theta \geq 2\sqrt{2}\), 当 \(\tan \theta = \sqrt{2}\) 时取等。
此时 \(R_{min} = \sqrt{\cfrac{1}{4} + 2} = \cfrac{2}{3}\)。