[MIT6.006] 21. Daynamic Programming III: Parenthesization, Edit Distance, Knapsack 动态规划III:括号问题,编辑距离,背包问题
这节课主要针对字符串/序列上的问题,了解如果使用动态规划进行求解。上节课我们也讲过使用前缀和后缀的概念,他们如下所示:

接下来,我们通过三个问题来深入了解下动态规划使用前缀、后缀和子串怎么去解决括号问题,编辑距离,背包问题。
一、括号问题 Parenthesization
在进行一些列矩阵乘法时,我们如果设计括号,可以使计算更加高效?

解决过程如下图所示:

- 子问题:求矩阵们A的最优相乘方式;
- 猜:上一次矩阵相乘应在哪?
- 递归:最小化矩阵相乘的损失;
- 拓扑排序:增加子串的大小;
- 原问题:DP(0, n);
二、编辑距离 Edit Dsitance
给定两个字串x和y,让x变成y的最廉价的字符编辑操作是怎样的?编辑距离问题在很多地方有应用,例如:拼写纠正,DNA编辑和找到最长公共子序列。

它的动态规划解题步骤如下:

- 子问题:在x[i:]和y[j:]后缀上做距离编辑了;
- 猜:是使用替换,插入还是删除操作;
- 递归:选择能最小化编辑损失的操作;
- 拓扑排序:相当于在DAG中找最短路径;
- 原问题:DP(0, 0)。
三、背包问题 Knapsack
假设你有n个物品,单个物品占用空间是si,价值是vi,请问如何往空间为S的塞进哪些物品能使它们价值最大?该问题动态规划解题步骤如下:

- 子问题:第i个物体的前缀和剩余空间X;
- 猜:是否将第i个物体放入背包;
- 递归:选择能最大化价值且不超过背包容量的操作;
注:这个伪polynomial时间我也不太了解(好像是说该动态规划的时间介于polynomial时间和指数时间之间),后续有待补充。
曼彻斯特大学 数据科学研究生 已毕业
现居地:深圳
兴趣领域:数据挖掘,机器学习及计算机视觉
博客:https://www.cnblogs.com/alvinai/
公众号:zaicode
Github:https://github.com/AlvinAi96
邮箱:alvinai9603@outlook.com
现居地:深圳
兴趣领域:数据挖掘,机器学习及计算机视觉
博客:https://www.cnblogs.com/alvinai/
公众号:zaicode
Github:https://github.com/AlvinAi96
邮箱:alvinai9603@outlook.com

浙公网安备 33010602011771号