阿里-马云的学习笔记

导航

数据结构(四)-----链表

内存分布

数组需要一块连续的内存空间来存储,对内存的要求比较高。如果我们申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。而链表恰恰相反,它并不需要一块连续的内存空

间,它通过“指针”将一组零散的内存块串联起来使用,所以如果我们申请的是 100MB 大小的链表,根本不会有问题。

 

 

链表种类

单链表

链表通过指针将一组零散的内存块串联在一起。其中,我们把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,我们把这个记录下个结点地址的指针叫作后继指针next。

在单链表图中,有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。我们习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。而尾结点特殊的地方是:

指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。

在数组中,插入和删除的时间复杂度为O(n),主要是因为插入、删除会导致数组元素的移动,影响性能。但是链表中所有元素本来就不是连续空间存储,因此插入、删除的效率是相对比较高的。如图所示:

 

只需要考虑相邻结点的指针改变,所以对应的时间复杂度是 O(1)。正是由于链表的这个特点,导致链表的查询就没那么快了,需要访问位置k上的元素,只能从头结点一个一个的遍历。所以,链表随机访问的性能没有数组好,需要 O(n) 的时间复杂度。 

循环链表

循环链表是一种特殊的单链表,其实就是尾结点的next指向头结点,形成一个循环。如图所示:

 

和单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。

双向链表

双向链表,顾名思义,它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针prev指向前面的结点。 

 

双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。

1、删除

日常开发中,删除主要是以下两种情况:

  • 删除结点中“值等于某个给定值”的结点;
  • 删除给定指针指向的结点。

对于第一种情况,不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过我前面讲的指针操作将其删除。尽管单纯的删除操作时间复杂度是 O(1),但遍历查找的

时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。 

对于第二种情况,我们已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。但是对于双向链表

来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了!同理,如果我们希望在链

表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在 O(1) 时间复杂度搞定,而单向链表需要 O(n) 的时间复杂度。

双向循环链表

 

链表 VS 数组性能

 

不过,数组和链表的对比,并不能局限于时间复杂度。而且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪个数据结构来存储数据。数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问

效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。

如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。 

 

posted on 2020-06-24 11:25  阿里-马云的学习笔记  阅读(379)  评论(0编辑  收藏  举报