Cauchy-Riemann Equations
Let us write a complex number \(z\) in vector form \(\begin{bmatrix}x\\y\end{bmatrix}\).
In mulitvariable calculus a fuction is differentiable at a point \((x_{0},y_{0})\), if and only if there is a linear-transformation \(T\) such that:
\[f(x,y) = f(x_{0},y_{0}) + T(x-x_{0}) + o(x-x_{0})
\]
So treat the complex function as a two real variable function, is differentiable at \(c\) if and only if there is a complex number \(z_{c}\) (thus, a linear transformation T), for all \(z\in\mathbb{z}\), s.t.
\[\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{bmatrix}x\\y\end{bmatrix}
=z_{c}*z
\Longleftrightarrow
\begin{pmatrix}
ax+by \\
cx+dy
\end{pmatrix}
=
\begin{pmatrix}
ux-vy \\
vx+uy
\end{pmatrix}\\
\]
here we are:
\[T=
\begin{pmatrix}
u & -v \\
v & u
\end{pmatrix}
\]
which is the form of cauchy-riemann equations.
浙公网安备 33010602011771号