Loading

三角函数公式大总结

前言

三角函数基本概念

  1. \(\sin^2 \alpha + \cos^2 \alpha = 1\)
  2. \(\sin \alpha = \sin(\alpha + 2k\pi)\)\(k \in \mathbb{Z}\)
  3. \(\cos \alpha = \cos(\alpha + 2k\pi)\)\(k \in \mathbb{Z}\)
  4. \(\tan \alpha = \tan(\alpha + 2k\pi)\)\(k \in \mathbb{Z}\)

\(2 \sim 4\) 可能也属于诱导公式。

诱导公式

  1. \(\sin \alpha = \cos(90^\circ - \alpha)\)
  2. \(\sin(\alpha + \pi) = -y = -\sin \alpha\)
  3. \(\cos(\alpha + \pi) = -x = -\cos \alpha\)
  4. \(\tan(\alpha + \pi) = \frac{\sin(\alpha + \pi)}{\cos(\alpha + \pi)} = \tan \alpha\)
  5. \(\sin(-\alpha) = -y = -\sin\alpha\)
  6. \(\cos(-\alpha) = x = \cos \alpha\)
  7. \(\tan(-\alpha) = \frac{\sin(-\alpha)}{\cos(-\alpha)} = -\tan \alpha\)
  8. \(\sin(\pi - \alpha) = y = \sin \alpha\)
  9. \(\cos(\pi - \alpha) = -x = -\cos \alpha\)
  10. \(\tan(\pi - \alpha) = \frac{\sin(\pi - \alpha)}{\cos(\pi - \alpha)} = \tan \alpha\)
  11. \(\sin(\frac{\pi}{2} - \alpha) = x = \cos \alpha\)
  12. \(\cos(\frac{\pi}{2} - \alpha) = y = \sin \alpha\)
  13. \(\tan(\frac{\pi}{2} - \alpha) = \frac{\sin(\frac{\pi}{2} - \alpha)}{\cos(\frac{\pi}{2} - \alpha)} = \frac{1}{\tan \alpha} = \cot \alpha\)
  14. \(\sin(\frac{\pi}{2} + \alpha) = x = \cos \alpha\)
  15. \(\cos(\frac{\pi}{2} + \alpha) = -y = -\sin \alpha\)
  16. \(\tan(\frac{\pi}{2} + \alpha) = \frac{\sin(\frac{\pi}{2} + \alpha)}{\cos(\frac{\pi}{2} + \alpha)} = -\frac{1}{\tan \alpha} = -\cot \alpha\)

三角恒等变换

posted @ 2023-08-06 15:07  Alexande  阅读(64)  评论(0)    收藏  举报