【861】Thematic mapping based on R programming
Ref: ggplot2 title : main, axis and legend titles
Ref: ggplot2 标题居中
Ref: ggplot的3种去掉图例的方法 (theme(legend.position="none"))
Ref: R绘图:一文了解ggplot2颜色的设置
Ref: R语言绘图|分级色彩地图
Ref: R语言数据地图——全球填色地图
Ref: R 语言画中国地图
Example: theme(plot.title = element_text(color="red", size=14, face="bold.italic"))
# Default plot
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) + geom_boxplot() +
ggtitle("Plot of length \n by dose") +
xlab("Dose (mg)") + ylab("Teeth length")
p
# Change the color, the size and the face of
# the main title, x and y axis labels
p + theme(
plot.title = element_text(color="red", size=14, face="bold.italic"),
axis.title.x = element_text(color="blue", size=14, face="bold"),
axis.title.y = element_text(color="#993333", size=14, face="bold")
)

Example: theme(plot.title = element_text(hjust = 0.5))
library(ggplot2) ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_point() + labs(title="Automobile Data", x="Weight", y="Miles Per Gallon")+ theme(plot.title = element_text(hjust = 0.5)) #也就加上这一行

Example: 使用ggplot2包中的scale_fill_gradient() 函数 填充颜色
geom_sf(data = countries,color = "black", aes(fill = gdp_cap_est)) + scale_fill_gradient(low = "white", high = "red") + theme_minimal()

Example:
library(tidyverse)
library(sf)
library(openxlsx)
library(ggplot2)
library(tmap)
tmap_mode("view")
library(sfhotspot)
library(sfdep)
library(dplyr)
setwd("/Users/libingnan/Documents/09-Samsung/25-New paper-Hotspot-Monkeypox/00_codes/ehsa_data/multi_months_2022_Europe")
geo_1 <- sf::read_sf("../gdf_europe.gpkg")
fn = "europe_2021-07-10_2022-06-10"
# read in data
file_name = substring(fn, 1, 28)
df_1 <- readr::read_csv(paste0(file_name,".csv"), col_types = "cDd")
# Create spacetime object called `bos`
bos <- spacetime(.data = df_1,
.geometry = geo_1,
.loc_col = ".region_id",
.time_col = "time_period")
# conduct EHSA
ehsa <- emerging_hotspot_analysis(
x = bos,
.var = "value",
k = 1,
nsim = 199
)
# should put geo in the first place, otherwise it will triger the projection error
geo_ehsa <- merge(geo_1, ehsa, by.x=".region_id", by.y="location")
# tm_shape: Specify the shape object
# tm_polygons: Draw polygons
# "clssification" is a column of hotspot_results
ggplot() +
geom_sf(data = geo_ehsa,color = "black", aes(fill = classification) ) +
scale_fill_manual(values=c("new hotspot" = "red",
"new coldspot" = "#F0F0F0",
"consecutive hotspot" = "orange",
"consecutive coldspot" = "#F0F0F0",
"intensifying coldspot" = "#F0F0F0",
"intensifying hotspot" = "purple",
"oscilating hotspot" = "pink",
"oscilating coldspot" = "#F0F0F0",
"persistent coldspot" = "#F0F0F0",
"persistent hotspot" = "pink",
"sporadic coldspot" = "#F0F0F0",
"sporadic hotspot" = "yellow",
"no pattern detected" = "#F0F0F0")) +
theme_minimal() +
labs(title = file_name) +
theme(plot.title = element_text(hjust = 0.5))
#ggsave(filename=paste0("./images/Rplot_", file_name, ".png"))

浙公网安备 33010602011771号