算法训练 2的次幂表示 ——蓝桥杯
问题描述
任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用递归实现会比较简单,可以一边递归一边输出
1 #include<stdio.h> 2 int a[15]={1,2,4,8,16,32,64,128,256,516,1024,2048,4096,8192,16384};//用来判断n的大小 3 int main() 4 { 5 void fun(int n); 6 int m; 7 scanf("%d",&m); 8 fun(m); 9 return 0; 10 } 11 void fun(int n) 12 { 13 int i; 14 if(n==0) {printf("0");return;} 15 if(n==1) {printf("2(0)");return;} 16 if(n==2) {printf("2");return ;} 17 for(i=14;i>=0;i--)//循环判断输出 18 { 19 if(n>=a[i]) 20 { 21 n-=a[i];//新的n的值 22 if(i==1) 23 { 24 printf("2"); 25 } 26 27 else 28 { 29 printf("2("); 30 31 fun(i); 32 printf(")"); 33 } 34 if(n!=0) 35 printf("+"); 36 } 37 } 38 }

浙公网安备 33010602011771号