随笔分类 - matlab
仿真、建模
PCA算法简介
摘要:PCA是一种能够通过提取数据主成分达到数据降维目的的无监督算法。因为数据之间(如自然图像的像素值)间都是存在冗余的,通过PCA可以将维度为256降到一个较低的近似向量。通过一个2D降到1D的例子来理解一下PCA的原理。假设有如下一堆二维数据,我们通过SVD奇异值变换可以找到,代表这堆数据的两个方向(特征向量的方向,为什么是特征向量,特征值呢?)怎么进行SVD变换呢?我们先计算这堆数据的协方差矩阵如下:数据变化的主方向就是sigma的主特征向量,次方向就是sigma的次特征向量。接下来我们计算旋转后的数据(也就是说把数据投影到以这两个特征方向为坐标轴的坐标平面内)如图:当我们只选取前面的k个主特
阅读全文
Linear Regression练习
摘要:前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex2/ex2.html。本题给出的是50个数据样本点,其中x为这50个小朋友到的年龄,年龄为2岁到8岁,年龄可有小数形式呈现。Y为这50个小朋友对应的身高,当然也是小数形式表示的。现在的问题是要根据这50个训练样本,估计出3.5岁和7岁时小孩子的身高。通过画出训练样本点的分布凭直觉可以发现这是一个典型的线性回
阅读全文