8月11日 leetcode 100、101
100. 相同的树(simple)
给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
示例 1:

输入:p = [1,2,3], q = [1,2,3]
输出:true
示例 2:

输入:p = [1,2], q = [1,null,2]
输出:false
示例 3:

输入:p = [1,2,1], q = [1,1,2]
输出:false
提示:
两棵树上的节点数目都在范围 [0, 100] 内
-104 <= Node.val <= 104
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if(p && q)
{
if(p->val==q->val)
{
return isSameTree(p->left,q->left) && isSameTree(p->right,q->right);
}
else
{
return false;
}
}
else if((p==nullptr && q!=nullptr) ||(p!=nullptr && q==nullptr))
{
return false;
}
else{
return true;
}
}
};
101. 对称二叉树(simple)
给定一个二叉树,检查它是否是镜像对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3
进阶:
你可以运用递归和迭代两种方法解决这个问题吗?
solution:
方法一:递归
思路和算法
如果一个树的左子树与右子树镜像对称,那么这个树是对称的。
因此,该问题可以转化为:两个树在什么情况下互为镜像?
如果同时满足下面的条件,两个树互为镜像:
- 它们的两个根结点具有相同的值
- 每个树的右子树都与另一个树的左子树镜像对称
我们可以实现这样一个递归函数,通过「同步移动」两个指针的方法来遍历这棵树,p 指针和 q 指针一开始都指向这棵树的根,随后 p 右移时,q 左移,p 左移时,q 右移。每次检查当前 p 和 q 节点的值是否相等,如果相等再判断左右子树是否对称。
class Solution {
public:
bool check(TreeNode *p, TreeNode *q) {
if (!p && !q) return true;
if (!p || !q) return false;
return p->val == q->val && check(p->left, q->right) && check(p->right, q->left);
}
bool isSymmetric(TreeNode* root) {
return check(root, root);
}
};
复杂度分析
假设树上一共 n 个节点。
时间复杂度:这里遍历了这棵树,渐进时间复杂度为 O(n)。
空间复杂度:这里的空间复杂度和递归使用的栈空间有关,这里递归层数不超过 n,故渐进空间复杂度为 O(n).
方法二:迭代
思路和算法
「方法一」中我们用递归的方法实现了对称性的判断,那么如何用迭代的方法实现呢?首先我们引入一个队列,这是把递归程序改写成迭代程序的常用方法。初始化时我们把根节点入队两次。每次提取两个结点并比较它们的值(队列中每两个连续的结点应该是相等的,而且它们的子树互为镜像),然后将两个结点的左右子结点按相反的顺序插入队列中。当队列为空时,或者我们检测到树不对称(即从队列中取出两个不相等的连续结点)时,该算法结束。
class Solution {
public:
bool check(TreeNode *u, TreeNode *v) {
queue <TreeNode*> q;
q.push(u); q.push(v);
while (!q.empty()) {
u = q.front(); q.pop();
v = q.front(); q.pop();
if (!u && !v) continue;
if ((!u || !v) || (u->val != v->val)) return false;
q.push(u->left);
q.push(v->right);
q.push(u->right);
q.push(v->left);
}
return true;
}
bool isSymmetric(TreeNode* root) {
return check(root, root);
}
};
复杂度分析
时间复杂度:O(n),同「方法一」。
空间复杂度:这里需要用一个队列来维护节点,每个节点最多进队一次,出队一次,队列中最多不会超过 n个点,故渐进空间复杂度为 O(n)。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/symmetric-tree/solution/dui-cheng-er-cha-shu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
本文来自博客园,作者:ahrismile,转载请注明原文链接:https://www.cnblogs.com/ahrismile/p/15127262.html

浙公网安备 33010602011771号