玩一玩 yolo v11
作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢!
记录体验 yolo v11 的过程:
1.下载镜像
docker pull ultralytics/ultralytics
这个镜像有 11 GB
2.进入镜像的 bash
docker run -it --name=yolov11_test -v ~/Pictures:/Pictures --ipc=host --cpus=2 -m=512m ultralytics/ultralytics:latest bash
3. 执行 yolo 命令行
cd /ultralytics
yolo detect predict model=yolo11n.pt source='/Pictures/bus.jpg'
对一张叫 bus.jpg 的图片进行目标检测。
输出:
image 1/1 /macos/Pictures/bus.jpg: 640x480 4 persons, 1 bus, 548.8ms
图中有 4 个人,一辆 bus.
4.使用python代码来对图片进行物体识别
# yolo_v11.py
import sys
import cv2
import numpy as np
from ultralytics import YOLO
def main():
imgPath = sys.argv[1]
img = cv2.imread(imgPath)
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
model = YOLO("/ultralytics/yolo11n.pt")
results = model(image_bgr)
if results is not None and len(results) > 0:
print(results[0].to_json())
if __name__ == '__main__':
main()
执行:
python yolov11.py ./bus.jpg
返回如下的 json:
[
{
"name": "bus",
"class": 5,
"confidence": 0.93556,
"box": {
"x1": 21.09849,
"y1": 230.98537,
"x2": 806.54425,
"y2": 734.20367
}
},
{
"name": "person",
"class": 0,
"confidence": 0.88089,
"box": {
"x1": 671.24689,
"y1": 394.42633,
"x2": 809.86993,
"y2": 878.40442
}
},
{
"name": "person",
"class": 0,
"confidence": 0.86937,
"box": {
"x1": 47.11706,
"y1": 400.43146,
"x2": 236.89668,
"y2": 904.49927
}
},
{
"name": "person",
"class": 0,
"confidence": 0.86492,
"box": {
"x1": 223.44214,
"y1": 409.60806,
"x2": 344.12372,
"y2": 859.69666
}
},
{
"name": "person",
"class": 0,
"confidence": 0.5732,
"box": {
"x1": 0.0,
"y1": 559.20795,
"x2": 65.6593,
"y2": 877.65045
}
}
]
Have Fun. 😃

浙公网安备 33010602011771号