hdu5495
LCS
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 638 Accepted Submission(s): 352
Problem Description
You are given two sequence {a1,a2,...,an} and {b1,b2,...,bn} .
Both sequences are permutation of {1,2,...,n} .
You are going to find another permutation {p1,p2,...,pn} such
that the length of LCS (longest common subsequence) of {ap1,ap2,...,apn} and {bp1,bp2,...,bpn} is
maximum.
Input
There are multiple test cases. The first line of input contains an integer T ,
indicating the number of test cases. For each test case:
The first line contains an integern(1≤n≤105) -
the length of the permutation. The second line contains n integers a1,a2,...,an .
The third line contains n integers b1,b2,...,bn .
The sum ofn in
the test cases will not exceed 2×106 .
The first line contains an integer
The sum of
Output
For each test case, output the maximum length of LCS.
Sample Input
2 3 1 2 3 3 2 1 6 1 5 3 2 6 4 3 6 2 4 5 1
Sample Output
2 4
参考链接:
官方题解
究竟怎么证明呢?
链接:http://blog.csdn.net/beihai2013/article/details/48884079
感谢beihai2013的回答:假设大于的话,那么至少有一个环对答案的贡献是环里点的个数。然后你就发现它不是环了
已ac的代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define N 100010
int a[N],b[N];
int ca[N];
bool mark[N];
int dfs(int now){
int sum=0;
while(!mark[now]){
mark[now]=true;
sum++;
now=b[ca[now]];
}
return sum;
}
int main(){
int t;
int n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
ca[a[i]]=i;
}
for(int i=1;i<=n;i++){
scanf("%d",&b[i]);
}
int ans=n;
memset(mark,false,sizeof(mark));
for(int i=1;i<=n;i++){
if(!mark[i]){
if(dfs(i)>1){
ans--;
}
}
}
printf("%d\n",ans);
}
}

浙公网安备 33010602011771号