莫反小练习
\[\sum_i \sum_j \operatorname{lcm}(a_i, a_j)
\]
\[= \sum_i \sum_j \sum_d [\gcd(a_i, a_j) = d] \dfrac{a_i a_j}{d}
\]
\[c_x = \sum_i [a_i = x]
\]
\[= \sum_d \sum_{1 \le i < j \le \lfloor \frac{V}{d} \rfloor} [\gcd(i, j) = 1] c_{id} c_{jd} ijd
\]
\[= \sum_d \sum_k dk ^ 2\mu(k) \sum_{1 \le i < j \le \lfloor \frac{V}{dk} \rfloor} c_{idk} c_{jdk} ij
\]
\[T = dk
\]
\[\sum_{1 \le i < j \le \lfloor \frac{V}{T} \rfloor} c_{iT} c_{jT} ij
\]
\[= \dfrac{(\sum_{1 \le i \le \lfloor \frac{V}{T} \rfloor} ic_{iT}) ^ 2 - \sum_{1 \le i \le \lfloor \frac{V}{T} \rfloor} i ^ 2 c_{iT} ^ 2}{2}
\]
直接算即可,复杂度 \(\mathcal{O}(V \log V)\)。

浙公网安备 33010602011771号