机器学习部分国内牛人

=======================国内====================

之前自己一直想总结一下国内搞机器学习和数据挖掘的大牛,但是自己太懒了。所以没搞…

最近看到了下面转载的这篇博文,感觉总结的比较全面了。

   个人认为,但从整体研究实力来说,机器学习和数据挖掘方向国内最强的地方还是在MSRA,

那边的相关研究小组太多,很多方向都能和数据挖掘扯上边。这里我再补充几个相关研究方向

的年轻老师和学者吧。

蔡登:http://www.cad.zju.edu.cn/home/dengcai/,Han Jiawei老师的学生,博士毕业后回浙大

任教,也算是国内年轻一代的牛人了。

万小军:https://sites.google.com/site/wanxiaojun1979/,得FQ才能看到主页。主要

研究方向是文本挖掘和语义计算。自然语言方向好会议发了很多文章。

张磊:http://research.microsoft.com/en-us/um/people/leizhang/

———————————————————————————————–

原文地址:http://blog.csdn.net/playoffs/article/details/7588597

李航:http://research.microsoft.com/en- us/people/hangli/,是MSRA Web Search and

Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习。

近年来,主要与人合作使用机器学习方法对信息检索中排序,相关性等问题的 研究。曾在

人大听过一场他的讲座,对实际应用的问题抽象,转化和解决能力值得学习。

周志华:http://cs.nju.edu.cn/zhouzh/,是南京大学的杰青,机器学习和数据挖掘方面

国内的领军人物,其好几个研究生都 进入了美国一流高校如uiuc,cmu等学习和深造。周教授

在半监督学习,multi-label学习和集成学习方面在国际上有一定的影响力。另外,他也

是ACML的创始人。人也很nice,曾经发邮件咨询过一个naive的问题,周老师还在百忙之中

回复了我,并对我如何发邮件给了些许建议。

杨强:http://www.cse.ust.hk/~qyang/,香港科技大学教 授,也是KDD 2012的会议主席,

可见功力非同一般。杨教授是迁移学习的国际领军人物,曾经的中国第一位acm全球冠军上

交的戴文渊硕士期间就是跟他合作发表了一系列 高水平的文章。还有,杨教授曾有一个关

于机器学习和数据挖掘有意思的比喻:比如你训练一只狗,若干年后,如果它忽然有一天能

帮你擦鞋洗衣服,那么这就是数 据挖掘;要是忽然有一天,你发现狗发装成一个老太婆

消失了,那么这就是机器学习。

李建中:http://db.hit.edu.cn/jianzhongli/,哈工大和黑大共有教授,是分布式数据库

的领军人物。近年来,其团队 在不确定性数据,sensor network方面也发表了一系列有名

文章。李教授为人师表,教书育人都做得了最好,在圈内是让人称道的好老师和好学者。

唐杰:http://keg.cs.tsinghua.edu.cn/jietang/,清华大学副教授,是图挖掘方面的专家。

他主持设计和实现的Arnetminer是国内领先的图挖掘系统,该系统也是多个会议的支持商。

张钹:http://www.csai.tsinghua.edu.cn/personal_homepage/zhang_bo/index.html 清华

大学教授,中科院院士,。现任清华大学信息技术研究院指导委员会主任,微软亚洲研究院

技术顾问等。主要从事人工智能、神经网络、遗传算法、智能机器 人、模式识别以及智能控

制等领域的研究工作。在过去二十多年中,张钹教授系统地提出了问题求解的商空间理
论。近年来,他建立了神经与认知计算研究中心以及多媒体信息处理研究组。该研究组已在

图像和视频的分析与检索方面取得一些重要研究成果。

刘铁岩:http://research.microsoft.com/en-us/people/tyliu/ MSRA研究主管,

是learning to rank的国际知名学者。近年逐步转向管理,研究兴趣则开始关注计算广告学方面。

王海峰:http://ir.hit.edu.cn/~wanghaifeng/ 信息检索,自然语言处理,机器翻译方面

的专家,ACL的副主席,百度高级科学家。近年,在百度主持研发了百度翻译产品。

何晓飞:http://people.cs.uchicago.edu/~xiaofei/ 浙江大学教授,多媒体处理,

图像检索以及流型学习的国际领先学者。

朱军:http://www.ml-thu.net/~jun/ 清华大学副教授,机器学习绝对重量级新星。

主要研究领域是latent variable models, large-margin learning, Bayesian nonparametrics,

and sparse learning in high dimensions. 他也是今年龙星计划的机器学习领域的主讲人之一。

———————————————————————————————-

吴军:http://www.cs.jhu.edu/~junwu/ 腾讯副总裁,前google研究员。

著名《数学之美》和《浪潮之巅》系列的作者。

张栋:http://weibo.com/machinelearning 前百度科学家和google研究员,机器学习工业界的代表人物之一。

戴文渊:http://apex.sjtu.edu.cn/apex_wiki/Wenyuan_Dai 现百度凤巢ctr预估组leader。

前ACM大赛冠军,硕士期间一系列transfer learning方面的高水平论文让人瞠目结舌。

 

 

 

======================资源====================

以前转过一个计算机视觉领域内的牛人简介,现在转一个更宽范围内的牛人简介:

 

 

http://people.cs.uchicago.edu/~niyogi/

http://www.cs.uchicago.edu/people/

http://pages.cs.wisc.edu/~jerryzhu/

http://www.kyb.tuebingen.mpg.de/~chapelle

http://people.cs.uchicago.edu/~xiaofei/

http://www.cs.uiuc.edu/homes/dengcai2/

http://www.kyb.mpg.de/~bs

http://research.microsoft.com/~denzho/

http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item5

(resources for the book of the introduction of data mining by Pang-ning Tan et.al. )(国内已经有相应的中文版)

http://www.cs.toronto.edu/~roweis/lle/publications.html    (lle算法源代码及其相关论文)

http://dataclustering.cse.msu.edu/index.html#software(data clustering)

http://www.cs.toronto.edu/~roweis/     (里面有好多资源)

http://www.cse.msu.edu/~lawhiu/  (manifold learning)

http://www.math.umn.edu/~wittman/mani/ (manifold learning demo in matlab)

http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/INDEX.HTM  (manifold learning in matlab)

http://videolectures.net/mlss05us_belkin_sslmm/   (semi supervised learning with manifold method by Belkin)

http://isomap.stanford.edu/    (isomap主页)

http://web.mit.edu/cocosci/josh.html  MIT    TENENBAUM J B主页

http://web.engr.oregonstate.edu/~tgd/    (国际著名的人工智能专家 Thomas G. Dietterich)

http://www.cs.berkeley.edu/~jordan/ (MIchael I.Jordan)

http://www.cs.cmu.edu/~awm/  (Andrew W. Moore’s  homepage)

http://learning.cs.toronto.edu/ (加拿大多伦多大学机器学习小组)

http://www.cs.cmu.edu/~tom/ (Tom Mitchell,里面有与教材匹配的slide。)

 

转自:http://www.52ml.net/

 

posted on 2015-10-01 19:22  Maddock  阅读(8855)  评论(1编辑  收藏  举报

导航