小白学Python——Matplotlib 学习(1)
众所周知,通过数据绘图,我们可以将枯燥的数字转换成容易被人们接受的图表,从而让人留下更加深刻的印象。而大多数编程语言都有自己的绘图工具,matplotlib就是基于Python的绘图工具包,使用它我们可以仅仅使用几行代码就生成 饼图、直方图、功率谱、条形图、错误图、散点图、气泡图,甚至生成动态图型也都很轻松。而且它的绘图方法丰富,可以在各种交互式环境中运行,且生成的图像质量高、兼容各种硬拷贝格式。
matplotlib的官网地址是https://matplotlib.org/index.html,下面这些是他们官网的一些示例图形。

pip安装
Matplotlib的安装比较容易,可以直接通过pip安装,也可以通过下载安装包的方式安装。博主使用的是python3,相关的安装命令如下:
pip install matplotlib
Matplotlib是整个包,matplotlib.pyplot是Matplotlib中的一个模块。对于pyplot模块中的功能,始终存在“当前”图形和轴(根据请求自动创建)。例如,在下面的例子中,在第一次调用plt.plot创建轴,则后续调用plt.plot在同一坐标添加额外的线,以及 plt.xlabel,plt.ylabel,plt.title和plt.legend设置轴标签和标题和添加的图例。pylab是一个便利模块,可以 在单个命名空间中批量导入 matplotlib.pyplot(用于绘图)和numpy(用于数学和使用数组)。不推荐使用pylab,并且由于命名空间污染而强烈建议不要使用它。请改用pyplot。对于非交互式绘图,建议使用pyplot创建图形,然后使用OO界面进行绘图。pyplot是matplotlib的一个模块,pylab是与matplotlib共同安装的模块。
matplotlib的用户指南分为三个等级:入门,中级,高级。在入门级,主要介绍下图内容

这里我首先介绍 使用指南 部分,即 Usage Guide。
1.一张图的组成
在使用matplotlib画图时,你会发现各种参数,下面就说说这些参数具体设置什么

简单绘图
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2, 100)
plt.plot(x, x, label='linear')
plt.plot(x, x**2, label='quadratic')
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
plt.show()

sinx 函数
import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 10, 0.2) y = np.sin(x) fig, ax = plt.subplots() ax.plot(x, y)
plt.title("Sin(x)") plt.show()

自定义画图函数
import matplotlib.pyplot as plt
import numpy as np
def my_plotter(ax, data1, data2, param_dict):
"""
A helper function to make a graph
Parameters
----------
ax : Axes
The axes to draw to
data1 : array
The x data
data2 : array
The y data
param_dict : dict
Dictionary of kwargs to pass to ax.plot
Returns
-------
out : list
list of artists added
"""
out = ax.plot(data1, data2, **param_dict)
return out
# which you would then use as:
data1, data2, data3, data4 = np.random.randn(4, 100)
fig, ax = plt.subplots(1, 1)
my_plotter(ax, data1, data2, {'marker': 'x'})
plt.show()

生成2个子图
fig, (ax1, ax2) = plt.subplots(1, 2)
my_plotter(ax1, data1, data2, {'marker': 'x'})
my_plotter(ax2, data3, data4, {'marker': 'o'})

交互模式
交互模式也可以通过matplotlib.pyplot.ion(),然后关闭通过打开matplotlib.pyplot.ioff()。
#交互式示例
import matplotlib.pyplot as plt
plt.ion()
plt.plot([1.6, 2.7])
plt.title("interactive test")
plt.xlabel("index")
ax = plt.gca()
ax.plot([3.1, 2.2])
#旧版本调用draw()显示图象
plt.draw()

#非交互式示例
import numpy as np
import matplotlib.pyplot as plt
plt.ioff()
for i in range(3):
plt.plot(np.random.rand(10))
plt.show()

在交互模式下,pyplot功能会自动绘制到屏幕上。
以交互方式绘制时,如果除了pyplot函数之外还使用对象方法调用,则draw()只要您想刷新绘图,就会调用。
在要生成一个或多个图形的脚本中使用非交互模式,并在结束或生成一组新图形之前显示它们。在这种情况下,用于 show()显示图形并阻止执行,直到您手动销毁它们。

浙公网安备 33010602011771号